• Login
    View Item 
    •   MUT Repository
    • Journal Articles
    • School of Engineering and Technology (JA)
    • Journal Articles (EN)
    • View Item
    •   MUT Repository
    • Journal Articles
    • School of Engineering and Technology (JA)
    • Journal Articles (EN)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    High Strain Rate Properties of Various Forms of Ti6Al4V(ELI) Produced by Direct Metal Laser Sintering

    Thumbnail
    View/Open
    High Strain Rate Properties of Various Forms of Ti6Al4V.pdf (14.85Mb)
    Date
    2021
    Author
    Muiruri, Amos
    Maringa, Maina
    Du Preez, Willie
    Metadata
    Show full item record
    Abstract
    For analysis of engineering structural materials to withstand harsh environmental conditions, accurate knowledge of properties such as flow stress and failure over conditions of high strain rate and temperature plays an essential role. Such properties of additively manufactured Ti6Al4V(ELI) are not adequately studied. This paper documents an investigation of the high strain rate and temperature properties of different forms of heat-treated Ti6Al4V(ELI) samples produced by the direct metal laser sintering (DMLS). The microstructure and texture of the heat-treated samples were analysed using a scanning electron microscope (SEM) equipped with an electron backscatter diffraction detector for electron backscatter diffraction (EBSD) analysis. The split Hopkinson pressure bar (SHPB) equipment was used to carry out tests at strain rates of 750, 1500 and 2450 s􀀀1, and temperatures of 25, 200 and 500 C. The heat-treated samples of DMLS Ti6Al4V(ELI) alloys tested here were found to be sensitive to strain rate and temperature. At most strain rates and temperatures, the samples with finer microstructure exhibited higher dynamic strength and lower strain, while the dynamic strength and strain were lower and higher, respectively, for samples with coarse microstructure. The cut surfaces of the samples tested were characterised by a network of well-formed adiabatic shear bands (ASBs) with cracks propagating along them. The thickness of these ASBs varied with the strain rate, temperature, and various alloy forms.
    URI
    https://doi.org/10.3390/ app11178005
    http://repository.mut.ac.ke:8080/xmlui/handle/123456789/6695
    Collections
    • Journal Articles (EN) [98]

    MUT Library copyright © 2017-2025  MUT Library Website
    Contact Us | Send Feedback
     

     

    Browse

    All of Research ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    MUT Library copyright © 2017-2025  MUT Library Website
    Contact Us | Send Feedback