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Abstract  

Purpose — Multi-task learning (MTL) is a deep learning approach that aims to jointly learn two 
or more tasks with the goal of leveraging shared knowledge among the tasks. This study 
aimed to review existing MTL models in medical image processing to understand the current 
state of research, evaluate major breakthroughs, and analyze open gaps and future research 
direction. 

Methodology — The study conducted a systematic literature review employing a search of 
peer-reviewed journal articles and conference proceedings.  The articles were sourced from 
IEEE, ScienceDirect, PubMed, and Google Scholar databases. 52 primary papers published 
between 2016 and 2024 were considered in this study.  

mailto:kamirijackson@gmail.com
mailto:jkamiri@mut.ac.ke


3419 
 

Results — The study's findings reveal that breakthroughs have been made in increasing the 
scope of task combinations in both homogenous and heterogenous tasks. Additionally, 
innovative architectural designs and learning methods have emerged. Although MTL has 
emerged as a panacea for medical image processing, some grey areas in research need to be 
addressed. They include task relatedness, scope of task combinations, generative MTL, and 
longitudinal MTL.  

Conclusion — The study conducted a comprehensive analysis of multi-task models in medical 
image processing. The findings reveal breakthroughs in architecture, task combinations, and 
learning methods, and open gaps in this field. Metrics variability and proprietary datasets 
were the major limitations of this study.   

Recommendations — Future researchers should focus on addressing the gaps identified in this 
study especially increasing the scope of MTL and designing more robust and highly 
generalizable neural networks for longitudinal MTL.  

Research Implications — The review evaluates the current state of medical image processing 
using MTL, offering insights into both theoretical and practical aspects. These insights provide 
direction for future researchers to advance the field and for policymakers to support ethical 
data collection and sharing.  

Keywords — multi-task learning, deep learning, medical image processing, computer vision, 
neural networks 

 

INTRODUCTION  

Multi-task learning (MTL) is a deep learning approach that aims at jointly learning two or 
more tasks together to leverage shared knowledge among the tasks. This shared knowledge 
helps to improve the performance of each task(Zhang & Yang, 2018). Traditionally deep 
learning models were trained to perform a single task; however, these traditional single-task 
models required a lot of training data which was not readily available in some domains such 
as medicine and bioinformatics. This gap led to the emergence of transfer learning where a 
deep neural network would be pre-trained using large-scale datasets such as ImageNet (Deng 
et al., 2009). The weights learned from ImageNet could then be transferred to performing 
new tasks that had smaller datasets such as medical image processing(Qummar et al., 2019).  
Some of the popular transfer learning networks that emerged and have been used in medical 
image processing include; VGG nets (Simonyan & Zisserman, 2015), Residual Networks (He et 
al., 2016), DenseNets (Huang et al., 2017), Alexnet (Krizhevsky et al., 2012), EfficientNet (M. 
Tan & Le, 2020), MobileNet (Howard et al., 2017) InceptionNet (Szegedy et al., 2015). The goal 
of transfer learning is to optimize a target task with the help of a source task (Zhang & Yang, 
2022).  

Although the concept of transfer learning enabled the development of deep learning 
solutions in domains where large datasets were not available, it faced challenges since only 
single-task models were developed from this.  The negative transfer was also a major issue 
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since the ImageNet dataset does not contain biomedical images. MTL seeks to address this 
gap by providing a way in which related tasks could be learned and optimized together. This 
mitigates overfitting by fostering a model's robustness and fostering the acquisition of a 
universal representation across multiple tasks (Ruder, 2017). Therefore, assuming that the 
tasks or a subset of them are related, then learning them together has been theoretically and 
empirically proven to improve performance as opposed to single-task learning (Zhang & Yang, 
2018). Multi-task learning can be grouped into six categories namely; multi-task supervised 
learning, multi-task semi-supervised learning (Khosravan & Bagci, 2018), multi-task 
unsupervised learning, multi-task reinforcement learning, multi-task active learning, and 
multi-task online learning(Zhang & Yang, 2018).   

Computer-aided medical image processing involves using computing technologies to 
process medical images. This has played a critical role in the diagnosis of various medical 
disorders from medical images (Rajpurkar et al., 2017;  Yu et al., 2021), (Zhang et al., 2021). 
Medical images are unique in several ways, first unlike natural images, intensity, and variance 
are very crucial in medical images since they could mean the presence or absence of a 
biological feature (Taghanaki et al., 2021). Second, scale plays a critical role since knowing the 
pixel size of a feature in a medical image can help in computing the size of something like a 
tumor. There exist numerous medical imaging modalities that can be used to obtain medical 
images. They include X-ray, Magnetic Resonance Imaging (MRI), Computed Tomography (CT), 
Positron Emitted Tomography (PET), Ultrasound, Microscopy, Retinal Imaging, Dermoscopy, 
Histopathology, X-ray mammography, Endoscopy, and X-ray Fluoroscopy, among others. Each 
of these modalities results in images with unique features. For instance, X-ray generates 2D 
images while MRI can generate 3D images.  MRI has different modalities namely T1, T2, Flair, 
and T1ce(Çetiner & Metlek, 2023) which have varying levels of detail and complexity during 
processing.  

 The field of medical image processing can benefit greatly from multi-task learning. First, 
MTL can help learn an array of related tasks such as medical image segmentation, object 
detection, classification, and reconstruction. Joint learning helps leverage shared knowledge 
leading to improved performance and efficiency. Secondly, MTL can help deal with multi-
modality in medical images through multi-modal fusion(Çetiner & Metlek, 2023). This involves 
combining different modalities to get a much-detailed understating of the organ under 
observation since each modality provides varying levels of detail, especially at the pixel 
level(Helland et al., 2023).  Multi-task learning can be influenced by two factors which are task 
relatedness and task definition (Zhang & Yang, 2018; Ruder, 2017; Zhang & Yang, 2022).  
Therefore, there is a need for researchers to understand which types of MTL can be ideal for 
their study as well as how task combinations can be done concerning task relatedness and 
task definition. Failure to consider this can result in MTL models that are not generalizable, 
optimal, and efficient.  

Although researchers such as (Buettner et al., 2020; Vetriselvi & Thenmozhi,2023; and 
Sohail et al.,  2022) have done systematic reviews on the use of deep learning in medical 
imaging, to the best of our knowledge no researcher has done a comprehensive systematic 
review of multi-task learning in medical image processing. Therefore, considering the 
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immense potential of MTL in medical imaging and the breakthroughs made in the field, there 
is a need for a study that provides a systematic review of MTL in medical image processing. 
This study was motivated to fill this gap in the literature by conducting a thorough systematic 
review of multi-task deep neural networks in medical image processing. A systematic 
literature review is an evidence-based way of evaluating and interpreting available research 
relevant to a particular research  (Kitchenham et al., 2009). The study analyzes the latest 
developments and breakthroughs in this field thus providing a basis from which researchers 
can learn different cutting-edge MTL techniques in medical image processing.  

METHODOLOGY  

The researchers employed a Systematic literature review following the guidelines of 
(Kitchenham et al., 2007 as cited by Kitchenham et al., 2009).  The guideline describes a three-
phase process of conducting an evidence-based systematic literature review. The three 
phases are; planning the review, conducting the review, and reporting the findings of the 
review. The choice of this guideline was informed by the comprehensive nature of the 
guideline since according to (Kitchenham et al., 2009) the guideline combines three other 
guidelines, two books, and discussions with participants from different disciplines.  

Research Questions  
The study was guided by the following research questions (RQ)  

1. RQ1:  Which type of data and imaging modalities have the models used?  
2. RQ2: What techniques have the existing MTL models used in medical image processing?  
3. RQ3:  Which task combinations have the models used? 
4. RQ4:  What are the outstanding gaps in the existing models?  

The research questions were derived as part of the planning phase of the phase systematic 
literature review process. The four questions cover the critical aspects of MTL in medical 
image processing. The first question seeks to understand the types of data and imaging 
modalities that are used together in medical image processing. The second question seeks to 
understand how researchers formulate their MTL setup, the third question seeks to 
understand how different medical imaging tasks can be combined in an MTL setup and the 
fourth question explores the gaps that existing studies have not covered so that future work 
can address them.  

Inclusion criteria  
 

For a study to be included in this review, it needed to satisfy the following criteria: First, 
the paper must be using deep learning to do more than one task in medical image processing. 
Second, the study must be published in a peer-reviewed journal or conference proceedings. 
Third, the study must have a strong methodology and theoretical foundation. Fourth, the 
study must be a primary research paper. Fifth, the study must have reported its results using 
evaluation metrics.  

Exclusion criteria  
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Any study that did not meet the inclusion criteria was excluded. In addition to that, studies 
older than eight years and studies not published in English were also not included. Where 
several versions of a paper excited the most recent version was considered.  

Search process 
 

To identify relevant papers, the researchers used a combination of searching for papers 
from research databases and identification of papers using references from included studies. 
The databases considered were Google Scholar, IEEE, PubMed, and Science Direct. The 
keywords used in the search were: “Multi-task learning in medical imaging”, “Multi-task 
learning in medical image processing”, “Multi-task deep learning in medical imaging”, “Multi-
task neural networks for medical imaging”, “Multi-task neural networks for medical image 
processing”, and “Deep learning in medical image processing”. The choice of several 
keywords was informed by the need to reduce the risk of omission of relevant studies.  

Quality Assessment  
 

Kitchenham et al., (2009) argue that quality is subjective, therefore, the researchers in this 
study set the quality threshold as the ability of the study to answer all the research questions. 
To determine how well each study satisfied the quality criteria, the researchers used the 
following approach. To satisfy RQ1 the researchers read the methodology section 
documenting the data used. To satisfy RQ2 and RQ3 researchers read the Abstract, 
methodology, and results sections documenting the architecture, techniques used, and 
implementation details of the model. To satisfy RQ4 the researchers considered the 
methodology, results, discussion, future works of the study, and independent analysis. 

Deviation from protocol 
 

A protocol in a systematic literature review defines the methods that will be used in the 
review. It contains all elements of the review and some additional planning information 
(Kitchenham et al., 2009). The researchers in this study followed the defined methodology to 
ensure that the findings were not influenced by researcher biases.  

 

 

 

RESULTS AND DISCUSSION  

This section documents the findings of the study. It demonstrates how the research 
questions were answered in the study. A total of 247 articles were identified, 24 articles were 
removed as per the exclusion criteria because they were duplicates, 110 articles were also 
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removed because they failed to meet the inclusion criteria, and 113 articles were screened 
through the quality assessment criteria out of which only 52 qualified to be included in this 
review.  Figure 1 shows the article selection processes. The papers were published between 
2016 and 2024. The data reveals that 36 of the papers (69.2%) included in the study were 
published between 2020 and 2021. Notably, this has been an active field since 2023 has four 
papers in the study. One of the papers in 2023 (Butoi et al., 2023) was identified as a ground-
breaking study in medical image segmentation.  

 

Figure 1: The selection process of articles that were included in the study 

Data Extraction  
 

The authors created a spreadsheet that was used to extract data. Each paper was placed 
in its individual worksheet and the following elements of the paper were captured. The title, 
authors, publication year, techniques used, learning method, tasks performed, dataset used, 
imaging technology used, data pre-processing techniques used, validation technique used, 
outstanding gaps, and links to codes or external data provided by papers.  

RQ1: Types of data and Imaging Modalities used  
 

The first research question aimed at analyzing the type of data used and medical imaging 
modalities used in training existing MTL models. The study discovered that at least each of 
the studies considered in the review used some dataset for training. Five (5) studies (9.62%) 
used primary dataset only, 39 studies (75%) used secondary dataset only, and 8 studies (15.39%) 
used a combination of primary and secondary datasets. This shows that secondary datasets 
have the highest level of usage among researchers in this field. This can be attributed to the 
fact that collecting primary data in the medical imaging domain is both costly and time-
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consuming. For instance,  Schacky et al., (2021) record that the secondary dataset used 
consisted of 934 images collected between 2000 and 2020. 

In terms of the number of datasets considered in the reviewed articles, we noted that 24 
studies (46.15%) used only 1 dataset, 14 studies (26.92%) used 2 datasets, 8 studies (15.38%) 
used 3 datasets, 4 studies used 4 datasets (7.69%), and only two studies (Butoi et al., 2023), 
and (Mormont et al., 2021) used above 5 datasets (3.85%). Considering that over 50% of the 
studies have used more than one dataset, it is evident that for MTL models to be generalizable 
they need to be exposed to more than one set. However, there is still huge a gap in exploring 
the generalization abilities of MTL models across multiple datasets since only two studies 
have gone past five datasets.   

The studies reviewed used either a single imaging modality or a combination of several 
imaging modalities. Figure 2 shows the distribution of medical imaging modalities found in the 
study.  The findings show that MRI is the most commonly used medical imaging modality, 
followed by CT scan, and then X-ray imaging.  The findings also reveal that 23.08% of the study 
used at least more than one imaging modality. Two studies  (Butoi et al., 2023) and (Mormont 
et al., 2021)  have been classified as "Not-specified (Multi-modal) since they have used a 
combination of datasets that have multiple imaging modalities and they have not 
categorically stated the imaging modalities used.  

 

Figure 2. Imaging Modalities Used 

 

RQ2 Multi-Task Learning Techniques used in medical image processing  
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The second research question aimed at exploring the various techniques that have been 
used in MTL for medical image processing. This section provides a thorough analysis of the 
findings.  

Learning Methods in MTL  
 

There are four main learning methods for MTL namely hard parameter sharing, soft 
parameter sharing, multi-task attention network, and cross-task attention network. Hard 
parameter sharing in MTL involves sharing common layers among the tasks, especially the 
feature extraction layers, and then the model branches into task-specific layers (Ruder, 2017) 
as shown in Figure 3. Hard parameter sharing enables a model to find a more generalized 
representation of all the tasks thus minimizing the risk of overfitting. However, there is a great 
need to consider the cooperativeness versus the competitiveness of the tasks involved while 
designing the hard parameter-sharing MTL.  This is because hard-parameter sharing is a 
feature-learning approach that focuses on learning common features among tasks (Zhang & 
Yang, 2022). Therefore, competing tasks would result in poor performance since the model 
will struggle to get a global minimum of the competing tasks. Forty-six (46) of the fifty-two 
articles considered in this review (88.46%) used hard parameter sharing as shown in Table 1.  

 

 

Figure 3.: Hard Parameter Sharing (Ruder, 2017) 

Soft parameter sharing involves each task having its model and parameters but 
knowledge is shared among the tasks through regularization (Ruder, 2017). Common 
regularization techniques that can be used include L1 also known as Lasso and L2 also known 
as Ridge regularization.   L1 arguments the loss function by adding a penalty term which is equal 
to the absolute values of the weights of the loss function (Huang et al., 2019). It can be 
represented mathematically as: 

𝐿𝑜𝑠𝑠 (𝐿1) = 𝐿𝑜𝑠𝑠 (𝑋) + 𝜆 ∑ |𝑤𝑖|𝑖 .           Equation 1 

L2 on the other hand argues the loss function by adding a penalty equal to the sum of the 
squared values of the loss function (Huang et al., 2019). It can be represented mathematically 
as: 

𝐿𝑜𝑠𝑠 (𝐿2) = 𝐿𝑜𝑠𝑠 (𝑋) + 𝜆 ∑ |𝑤𝑖
2|𝑖 .     Equation 2 
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 𝐿𝑜𝑠𝑠 (𝑋)  represents the original loss function such as cross-entropy loss or mean 
squared error, λ represents a hyperparameter that determines the strength of the 
regularization and the coefficients of the model are represented by 𝑤𝑖.  Three articles in this 
study used soft parameter sharing they represent 5.77% of the total papers considered. Figure 
4 shows Soft parameter sharing.   

 

 

Figure 3. Soft Parameter Sharing(Ruder, 2017) 

Multi-task attention network (MTAN) introduced by Liu et al., (2019) consists of shared 
feature extraction layers but with soft attention mechanisms for each task. The attention 
mechanism allows for optimizing the learning of task-specific features from the shared 
feature extractor while still allowing features to be shared across the tasks. From our analysis, 
no article used MTAN in medical image processing. Kim et al., (2023), argue that although 
MTAN has gained huge popularity in non-medical image processing due to its ability to analyze 
pixel-level features, it is challenged in the medical image processing domain since many 
medical images lack clear pixel-level features. To address this gap Kim et al., (2023) proposed 
a cross-task attention network (CTAN).  

Cross-task Attention Network (CTAN) is a hybrid framework that can process both image-
level features and pixel-level features. It consists of a cross-task attention encoder and a cross-
task attention bottleneck. The cross-task attention encoder extracts task-specific information 
in the encoder in a similar way to the attention modules in MTAN. The cross-attention 
bottleneck captures inter-task interactions across the tasks. Only one article (Kim et al., 2023) 
used CTAN representing 1.92% of the papers considered in the study.  Figure 5 shows CTAN. 
Two articles among the analyzed articles used hybrids of learning methods.  Liu et al., (2017) 
used a hybrid of soft parameter sharing and hard parameter sharing, while Yang et al., (2021) 
used a hybrid of soft parameter sharing and CTAN as shown in Table 1.   
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Figure 4. Cross-Task Attention Network (CTAN)(Kim et al., 2023a) 

Table 1: MTL learning methods and the studies/articles that have used them.

MTL Learning Method Studies that use the Method 

Hard-Parameter sharing  (Rajpurkar et al., 2017; Gao et al., 2020; Amyar et al., 2020; 
Chen et al., 2019; Moeskops et al., 2016; Tran et al., 2021; Ngo 
et al., 2020; Liu et al., 2021; Park et al., 2020; Haque et al., 2021; 
Song et al., 2020; Zhang et al., 2021; Vesal et al., 2021; Marinov 
et al., 2023; Pascal et al., 2022; Peng et al., 2019; Haque et al., 
2021; Yu et al., 2021; Tan et al., 2018; Cheng et al., 2022; 
Murugesan et al., 2019; von Schacky et al., 2021; Khosravan & 
Bagci, 2018; Zhai et al., 2020; Mormont et al., 2021; Eslami et 
al., 2020;  Chen et al., 2019; Gong et al., 2021; Zhou et al., 2020; 
Hong et al., 2020; Wang et al., 2020; Chamanzar & Nie, 2020; 
Zhang et al., 2021; Namburete et al., 2018; Kordnoori et al., 
2023;  Liu et al., 2018; Feng et al., 2018; Vuong et al., 2020; Li et 
al., 2021; Butoi et al., 2023; K. Zhou et al., 2018; Duan et al., 
2019; Sukegawa et al., 2021; Dvornek et al., 2019; He et al., 
2021; Yang et al., 2021).  

Soft-parameter Sharing  (Alom et al., 2020; Thung et al., 2017; H. Huang et al., 2022) 

Cross-task attention 
Network (CTAN) 

(Kim et al., 2023) 

Hybrid (Hard-parameter & 
Soft parameter sharing  

(Liu et al., 2017) 

Hybrid (Soft parameter 
sharing & CTAN) 

(Yang et al., 2021) 

RQ 3 Task Combinations  
 

The third question aimed at analyzing the task combinations that constitute MTL. 
Different task combinations can constitute the MTL model.  Standley et al., (2020) argue that 
in an MTL setup, it is likely that all tasks can improve in performance if they are cooperating 
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tasks. It is also possible for some tasks to aid others in improving performance while they do 
not improve in performance. Such tasks are known as loss-guiding tasks or residual tasks. In 
the field of medical image processing, numerous single tasks can be put in a multi-task setup. 
They include; segmentation, classification, regression, object detection, and reconstruction, 
among others.   

When all the tasks in the MTL setup fall under a single type of learning such as supervised 
learning it is called homogenous MTL. On the other hand, if the tasks have combinations of 
several types of learning such as supervised and semi-supervised learning then it is known as 
heterogenous MTL(Zhang & Yang, 2022). The scope of a single task varies from one study 
formulation to another. For instance, in (Butoi et al., 2023) a single task is the segmentation 
of images from a specific imaging modality like MRI, so their definition of   MTL is the ability 
to jointly segment images from multiple imaging modalities. Others such as (Xue et al., 2021) 
consider voxel-wise segmentation of pancreas and skeleton extraction from the same CT 
images dataset as their MTL combination. Mormont et al., (2021) had an MTL setup that 
combined digital pathology images into a pool with 22 classification tasks and 81 classes.  

Therefore, it is evident that the framing of tasks to be included in an MTL model should be 
informed by whether the included tasks can be split into individual single tasks. Thus, an MTL 
can be considered to be true if each task can be associated with a loss function. A major 
notable theme in this study is that for joint learning to happen, the majority of the studies 
reviewed have formulated a combined loss function that considers the task-specific loss 
functions of the individual tasks. i.e given three tasks 𝑇𝑎, 𝑇𝑏 , 𝑎𝑛𝑑 𝑇𝑐 , and given their loss 
functions as 𝐿𝑎, 𝐿𝑏,𝑎𝑛𝑑 𝐿𝑐 then the combined loss can be formulated as:   

𝐿𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 𝜆1𝐿𝑎 + 𝜆2𝐿𝑏 + 𝜆3𝐿𝑐     Equation 3 

Where 𝜆1, 𝜆2, 𝑎𝑛𝑑 𝜆3 are weights for individual loss function.  For instance, take a scenario of 
an MTL model performing classification and segmentation of medical images from the same 
dataset. The objective of classification is to assign an input 𝑋 to a class 𝐾. The input space can 
be defined as 𝑋 = (𝑥1, 𝑥2, 𝑥3, … . 𝑥𝑑) ∈ ℝ𝑑  for a single input datapoint with 𝑑  features. This 
input has labels 𝑦 𝑦 ∈ {1,2, … 𝐾}  where there are K possible classes i.e. a multi-class 
classification. For binary classification then this would be 𝑦 ∈ {0, 1} . A model 𝑓(𝑋; 𝜃)  is 
formulated as the learning function where θ represents the parameters of the model learned 
during training. A classification task goes through a probability estimation 𝑃(𝑦 = 𝑘|𝑋; 𝜃)   that 
an input 𝑋 belongs to a class given the model parameters θ. Thus, a SoftMax function of this 
task is represented as:  

𝑃(𝑦 = 𝑘|𝑋; 𝜃) =
exp (𝑓𝑘(𝑋;𝜃))

∑ exp (𝑓𝑗(𝑋;𝜃))𝐾
𝑗=1

    Equation 4 

Where 𝑓𝑘(𝑋; 𝜃) is the logit (output score) of class k. A loss function such as the cross-
entropy loss is used to evaluate how well a model has learned by measuring the difference 
between predicted labels and actual labels.  An average cross-entropy loss for a dataset with 
𝑁 examples can be represented as; 

𝑙𝑐𝑠(𝜃) = −
1

𝑁 
∑ 𝑙𝑜𝑔 𝑃(𝑦𝑖|𝑋𝑖; 𝜃)𝑁

𝑖=1      Equation 5 
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given that (𝑥𝑖, 𝑦𝑖) is the ith training sample. When the 𝑙𝑐𝑠(𝜃) is too high researchers perform 
optimization, which is the process of minimizing the loss by adjusting parameters θ. This is 
mainly done using gradient learning optimizers such as Stochastic gradient descent (SGD), 
Adam, Adamax, RMSprop, Adagrad, and Adadelta, among others(Dogo et al., 2018).   

The objective of segmentation is to assign a label to each pixel in an image. The input space 
is defined as 𝑋 ∈ ℝ𝐻×𝑊×𝐶  where X is the input image with features Height (H), Width (W), and 
RGB Channels (C). The labels for the input image are 𝑌 ∈ {1,2, … . 𝐾}𝐻×𝑊 where there are K 
possible classes, and each element 𝑌𝑖𝑗 represents the class labels of pixels at position (𝑖, 𝑗). 

The model is thus formulated as 𝐹(𝑋; 𝜃)  where F is a function that maps the input image X to 
a matrix of class labels: 𝐹:  ℝ𝐻×𝑊×𝐶 → {1,2, … 𝐾}𝐻×𝑊. The probability that a pixel in position 
(𝑖, 𝑗) of image X belongs to k can be computed as 𝑃(𝑌𝑖𝑗 = 𝑘|𝑋; 𝜃) Thus a SoftMax function of 

this task is represented as:  

𝑃(𝑌𝑖𝑗 = 𝑘|𝑋; 𝜃) =
exp (𝐹𝑖𝑗

𝑘(𝑋;𝜃))

∑ exp (𝐹𝑖𝑗
𝑚(𝑋;𝜃))𝑘

𝑚=1
    Equation 6 

 Where 𝐹𝑖𝑗
𝑘(𝑋; 𝜃) is the logit for class k at pixel (𝑖, 𝑗). The average cross entropy loss of a 

dataset with 𝑁 images can be represented as: 

𝑙𝑠𝑒𝑔(𝜃) = −
1

𝑁
∑ ×𝑁

𝑖=1 ∑ ×𝐻
𝑚=1 ∑ 𝑙𝑜𝑔 𝑃((𝑌𝑖)𝑚𝑛|𝑋𝑖; 𝜃)𝑊

.=1 . 

Equation 7 

Optimization is then applied to reduce the error rate.  The combined loss function for the 
two tasks will be: 𝐿 = 𝜆1𝑙𝑐𝑙𝑠(𝜃) + 𝜆2𝑙𝑠𝑒𝑔(𝜃). As the number of tasks continues to increase 

then the combined loss is adjusted accordingly. For instance in Gao et al.,(Gao et al., 2020) 
each of the three tasks in the MTL model has a task-specific loss function i.e Tumor detection 
(bounding box regression loss), segmentation (average cross-entropy loss), and classification 
(log loss). The three loss functions are then combined to have. 

“𝐿𝑢𝑛𝑖 = 𝜆1𝐿𝑐𝑙𝑠 + 𝜆2𝐿𝑏𝑜𝑥 + 𝜆3𝐿𝑚𝑎𝑠𝑘” (Gao et al., 2020)   Equation 8 

 
Network Architectures 

   

Network architecture refers to the designing of a deep neural network used in a particular 
model. Several architectures have emerged in this review. The choice of architecture was 
mainly influenced by the tasks being performed by the MTL model. MTL models that had 
segmentation as part of their task collection used an encoder-decoder architecture. The most 
prominent encoder-decoder architecture used by majority of the studies that did 
segmentation is the U-net and its variants (Chen et al., 2019; Ngo et al., 2020; Park et al., 2020; 
Haque et al., 2021; Vesal et al., 2021; Marinov et al., 2023; Pascal et al., 2022; Murugesan et al., 
2019; Alom et al., 2020, Chen et al., 2019; Chamanzar & Nie, 2020; Kordnoori et al., 2023; Butoi 
et al., 2023;  Xue et al., 2021;  He et al., 2021).  
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A U-net is a network architecture that was created primarily for image segmentation. The 
base U-net has two parts which are the encoder also known as the contracting part and the 
decoder which is also known as the expanding part. The encoder has a series of blocks with 
each block having 3*3 convolution followed by RELU(Siddique et al., 2021). The decoder part 
up samples, concatenates and crops the features. Cropping eliminates edge features since 
they have the least contextual information(Siddique et al., 2021). The network’s energy 
function can be given as:  

“𝐸 = ∑ 𝑤(𝑥) log (𝑃𝑘 𝑥(𝑥))     Equation 9 

 

Where 𝑃𝑘 is the pixel-wise softmax activation function applied over the final feature map” 
(Siddique et al., 2021). 

The other studies that did segmentation used pre-trained CNN architectures (Gao et al., 
2020; Kim et al., 2023; Song et al., 2020; Hong et al., 2020; Feng et al., 2018). Some used unique 
networks such as Cheng et al., (2022) who used a hybrid of U-net and residual network. Huang 
et al., ( 2021) who used DeepLab v2. Liu et al., (2021) used a V-net.  MTL models that were 
classified as one of their tasks also used pre-trained CNNs such as (Peng et al., 2019; Vuong et 
al., 2020). The other studies used custom convolutional neural networks and other types of 
neural networks to perform their respective tasks.  For instance, Dvornek et al., (2019) used 
recurrent neural networks and long short-term memory.  The findings reveal that the choice 
and design of the network architecture are influenced highly by the task combinations. The 
network design must be able to meet the objectives of the two tasks, therefore, it should 
optimize the loss functions of the two tasks and develop a global minimum based on the 
combined objective functions. This means that moving into the future newer architectures 
are likely to emerge as more tasks continue to be combined for joint learning.  

RQ 5 Open Challenges and Future Research Issues  
 

The last question in this review aimed at evaluating the future of research in Multi-task 
learning for medical image processing. This section outlines the open challenges in the domain 
and future research directions. The first open challenge is an expansion of the multi-task 
scope. This could take different formats. Mormont et al., (2021) have attempted to increase 
the scope of classification tasks by creating a MTL model with 22 classification tasks. Butoi et 
al., (2023) have also done some good work in increasing the scope of MTL by having a 
universal model that can segment medical images from various imaging modalities. Others 
such as (Rajpurkar et al., 2017), have expanded the scope by creating models that can 
diagnose multiple 14 disorders though from the same ChestX-ray 14 dataset.  However, 
despite these developments, there is still a need to expand the scope of MTL models to 
capture; more task combinations, more generalization across different imaging modalities, 
and even the inclusion of non-imaging tasks such as clinical history as residual tasks to aid MTL 
image processing. There is also a need to design more optimal MTL models that can achieve 
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high performance at a lesser cost compared to the combined cost of their respective single-
task counterparts(Standley et al., 2020).  

 

The issue of task combination is a major challenge that needs to be addressed. Standley 
et al., (2020) have demonstrated that not all tasks can improve each other when combined. 
Therefore, researchers need to define a theoretical framework that can define task 
relatedness. This can be approached either from feature-relatedness or parameter-
relatedness (Zhang & Yang, 2018). Soft parameter sharing has been used in most cases when 
dealing with competing tasks(Ruder, 2017). However, the regularization techniques used still 
fall short in terms of efficient sharing of parameters among the tasks, thus, resulting in high 
negative transfer rather than positive transfer(Standley et al., 2020). This is because the ridge 
and Lasso regularization techniques focus on the use of a penalty to control overfitting. 
Therefore, there is a need for an advanced regularization technique that can evaluate the 
quality and impact of shared parameters to minimize negative transfer.  

The other open challenge is the development of longitudinal MTL models that integrate 
seamlessly with clinical workflows. This means that there is a need for MTL models that can 
monitor patient medical image data over some time to assess the progress of the medical 
condition under consideration. The next challenge is the need for more accurate generative 
MTL models. There are numerous medical conditions such as cancers that can mutate, thus a 
generative MTL model can play a critical role in generating future mutation images of such 
medical conditions. There are also cases where organs could be severely damaged. A 
generative model can help in regenerating images of the original organ for purposes of 
damage assessment.   

CONCLUSION  

Deep learning models are increasingly improving in their capabilities with Multi-task 
learning attracting the attention of many researchers. Multi-task learning has demonstrated 
its capability to provide more generalizable and cost-effective models. This is especially critical 
in fields such as medical imaging where single-task models are not only inefficient but also 
costly. This inefficiency and high cost of single-task models are mainly caused by the lack of 
large-scale medical datasets such as ImageNet. Also, the distinct differences between natural 
images contained in ImageNet and medical images make transfer learning not an optimal 
solution. This, therefore, places multi-task learning at the best place in processing medical 
images. Through this study, we have analyzed 52 primary papers and presented our findings 
to answer the research questions. In the first RQ question, we present a detailed analysis of 
imaging modalities and types of data used in medical image processing.  In the second 
question, we have analyzed the key MTL techniques that can be used in both computer vision 
and non-computer vision tasks. In our third research question, we have critically analyzed how 
task combinations can be formulated in medical image processing. Finally, we provide an 
analysis of outstanding gaps that future researchers can work on addressing. Addressing the 
identified gaps would be a great path toward artificial general intelligence in medical image 
processing.  



3432 
 

IMPLICATIONS  

The review evaluates the current state of research in medical image processing using 
multi-task learning (MTL), offering readers a comprehensive understanding of both the 
theoretical and practical aspects of the field. Theoretically, it provides an in-depth analysis of 
cutting-edge techniques in task combinations, learning methods, formulation of joint learning 
functions, and architectural design of MTL networks. Practically, it critically examines the 
training of MTL models with various datasets and medical imaging modalities. Zhang and Yang, 
(2018) argue that a well-designed MTL setup can theoretically and practically improve the 
overall performance of the cooperating task. This has been validated by (Amyar et al., 2020), 
who did joint segmentation of CT images and detection of COVID-19 from the images and 
achieved a dice coefficient of 0.88 specificity of 0.97, sensitivity of 0.90 for the segmentation 
task and area under the curve (AUC) of 97% for classification.    

Butoi et al., (2023) have also demonstrated that multi-modal fusion in medical image 
segmentation can improve the generalizability of models. Additionally, the review identifies 
open gaps in the field, guiding researchers and practitioners toward future research directions 
to advance the discipline. The study highlights the high cost of collecting primary datasets, 
which hinders the development of MTL models, particularly for emerging medical disorders 
in many parts of the world.  This finding calls for policymakers in healthcare to create policies 
that encourage the ethical collection and sharing of medical imaging datasets, facilitating the 
customization of MTL solutions for specific disorders. Federated learning is one approach that 
can guarantee ethical sharing of data between medical facilities and researchers especially 
when researchers need data from multiple facilities.  Also, there is a need for researchers to 
enhance the explainability of their models to ensure they are not biased as part of enhancing 
ethics in this field.  
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