
ENHANCED DEEP LEARNING MODEL TO DETECT

ANOMALIES IN SURVEILLANCE VIDEOS

John Gatara Munyua

A Thesis Submitted in Partial Fulfilment of the Requirements for the

Degree of Master of Science in Information Technology of Murang’a

University of Technology

August, 2022

ii

DECLARATION

I hereby declare that this thesis is my original work and to the best of my knowledge has

not been presented for a degree award in this or any other university.

______________________ ______________

John Gatara Munyua Date

SC401/5075/2018

APPROVAL

The undersigned certify that they have read and hereby recommend for acceptance of

Murang’a University of Technology a thesis entitled “Enhanced Deep Learning Model

to Detect Anomalies in Surveillance Videos.”

Dr. Geoffrey Mariga Wambugu, Ph.D. Date

Department of Information Technology,

Murang’a University of Technology.

_________________________ __________________

Dr. Stephen Thiiru Njenga, Ph.D. Date

Department of Computer Science,

Murang’a University of Technology.

16/08/2022

iii

DEDICATION

Dedicated to:

My lovely wife Grace and our daughter Gillian,

You have made my life extremely comfortable and given me hope.

My Mother Mary,

 You have always believed in me.

My siblings Catherine, Florence, and Winnie,

 Thank you for the support and encouragement.

iv

ACKNOWLEDGEMENT

My humble gratitude goes to the almighty God, for blessing me with know-how, peace of

mind and good health to finish this thesis.

My vote of thanks, goes to my brilliant supervisors; Dr Geoffrey Mariga and Dr Stephen

Njenga, who has guided me well throughout my research journey. I was fortunate to have

supervisors, who encouraged me when the journey was rocky.

To Prof. Geoffrey Muchiri, I appreciate the role you played in the initial stages of this

thesis. To Dr Gabriel Kamau, Dr Aaron Oirere and Dr John Ndia I appreciate your

continued support and guidance in my work. To the School of Computing and Information

Technology (SCIT) fraternity at MUT, thank you for the directions you have provided

and for continued support throughout my work.

I will be forever, grateful to my family for their patience, understanding and tolerance

throughout this journey.

MAY GOD BLESS YOU ABUNDANTLY

v

ABSTRACT

Increased security challenges and advancements in technology have led to heavy usage

of surveillance cameras. This has resulted in an overwhelming abundance of video data

which requires automated analytics for better utilization. The big volume of the video data

generated by surveillance devices presents an enormous problem to the security personnel

since they must monitor the footage frame by frame to identify the abnormal activities

(security threats) like violence, and thuggery, among others. Successful identification of

anomalies in surveillance footage will ease the work of Closed-Circuit Television

(CCTV) operators greatly since they can search through a big volume of the video data

easily. Another importance of this research is the contribution to computer vision since

the model can be applied in other areas like robotic surveillance or unmanned

surveillance. There have been attempts to automate the surveillance process using smart

surveillance. However, these solutions are challenged due to high error rates and

inefficiency while identifying abnormal scenes. Modern automated video analytics, use

deep learning algorithms like; Convolutional Neural Networks (CNN), Long-Short Term

Memory (LSTM), convolutional LSTM and 3DCNN. These approaches have their

strengths and weaknesses, and it becomes a research challenge to determine the best

model to use in detecting anomalies. Another challenge presented herein is the accuracy

of detecting anomalies in surveillance videos. A comparative study was carried out to

cross-examine deep learning models used in anomaly detection. Empirical data was

collected to measure the accuracy of the deep learning models in anomaly detection. The

best model was determined by analyzing the accuracies of the model published since

2016. Experiments were set up in Google Collab and Google Cloud. These environments

were configured to use Python 3.7, Keras and TensorFlow machine learning frameworks.

The study improved the selected deep learning model through, optimization of the model

structure and depth tuning. The study found that deeper autoencoders have high prediction

accuracy and deeper spatial autoencoders draws more features from the videos and that

increases their accuracy. Validation of the enhanced model was done through further

experiments that compared the prediction accuracy acquired from the enhanced model

against the existing model set as the control group. Their Receiver Operating

Characteristic Curve (ROC) scores from UCSD Ped1 and Ped2 datasets were compared.

Comparative analysis of the recorded model accuracies was tabulated and a percentage

increase in the model accuracy was noted. A sign test was used to test the significance of

the improvement and at both 1% and 5% significance levels, empirical evidence of the

enhancement was found. This work contributed to the autoencoder design paradigms,

improvement of Spatial-Temporal Autoencoder accuracy through depth and

regularization tuning and reduction of anomaly detection errors in surveillance videos.

The study has shown that the depth of spatial-temporal autoencoder impacts its anomaly

prediction accuracy. In future work, integration of continual learning and real-time

anomaly detection should be considered.

vi

TABLE OF CONTENTS

DECLARATION ... ii

DEDICATION .. iii

ACKNOWLEDGEMENT ... iv

ABSTRACT ... v

LIST OF TABLES ... ix

LIST OF FIGURES .. x

ABBREVIATIONS ... xii

CHAPTER ONE: INTRODUCTION ... 1

1.1 Background to the Study .. 1

1.2 Problem Statement ... 6

1.3 Objectives of the study ... 7

1.3.1 Main Objective .. 7

1.3.2 Specific Objectives ... 8

1.4 Research Questions .. 8

1.5 Justification .. 8

1.6 Scope of the Study .. 9

1.7 Significance of the study .. 10

1.8 Limitations of the study .. 11

1.9 Contributions of the Thesis .. 11

1.10 Organization of the Thesis .. 12

CHAPTER TWO: LITERATURE REVIEW .. 14

2.1 Introduction .. 14

2.2 Overview of Anomaly Detection Deep Learning Models 14

2.2.1 Understanding Deep Anomaly Detection ... 14

2.2.2 Selected Deep Learning Models in Video Anomaly Detection 17

2.2.3 Convolutional Neural Networks – ConvNet ... 18

2.2.4 3D Convolutional Neural Networks (3D- CNN) 21

2.2.5 Recurrent Neural Networks – (RNN) ... 22

2.2.6 Long Short-Term Memory (LSTM) ... 23

2.2.7 Conv-LSTM .. 24

vii

2.2.8 Autoencoders .. 24

2.3 Other technologies used in Anomaly detection .. 25

2.3.1 Use of Motion Sensors .. 25

2.3.2 Behavior Tracking based anomaly detection .. 26

2.4 Model Development Strategies .. 27

2.4.1 Model Development Process .. 28

2.4.2 Model Design Considerations ... 30

2.4.3 Model Improvement Strategies ... 34

2.5 Deep Learning Models Evaluation and Validation .. 38

2.6 Conceptual Framework .. 40

2.7 Summary .. 41

CHAPTER THREE: METHODOLOGY ... 42

3.1 Introduction .. 42

3.2 Research Design ... 42

3.2.1 Systematic Literature Review ... 42

3.2.2 Experimentation .. 42

3.3 Design of the Experiment ... 45

3.4 Research Procedure .. 47

3.5 Data Analysis ... 48

3.5.1 Deep Learning Models Evaluation Experiment .. 48

3.5.2 Validation of Enhanced Model Experiment ... 49

3.6 Summary .. 50

CHAPTER FOUR: RESULTS AND DISCUSSION ... 51

4.1 Introduction .. 51

4.2 Deep Learning Models ... 51

4.2.1 Review of the Deep Learning Models in Anomaly Detection 53

4.2.2 Experimental Investigation of the Reviewed Models 62

4.2.3 Results of Experimental Investigation .. 72

4.2.4 Selected Model .. 74

4.3 Data Preprocessing ... 78

4.4 Model Enhancement ... 80

viii

4.4.1 Max-Pooling Treatment .. 80

4.4.2 Model Depth Tuning ... 84

4.4.3 Enhanced Autoencoder Model Training ... 87

4.4.4 Extraction of features and dimensionality reduction 89

4.4.5 Introduction of One-class Support Vector Machine 89

4.5 Experiments .. 94

4.5.1 Datasets ... 94

4.5.2 Model Parameters ... 95

4.6 Model Validation .. 95

4.6.1 Results of the Experiments ... 95

4.6.2 Comparison of Models Accuracy ... 102

4.6.3 Test of statistical significance ... 103

4.7 Summary .. 106

CHAPTER FIVE: SUMMARY, CONCLUSION AND

RECOMMENDATIONS .. 107

5.1 Summary .. 107

5.2 Conclusion .. 108

5.3 Recommendations .. 108

5.3.1 Recommendations to policy .. 108

5.3.2 Recommendations for Future Works .. 109

REFERENCES .. 110

APPENDICES ... 126

ix

LIST OF TABLES

Table 2.1: A table showing the usage of deep learning models used in video anomaly

detection adapted from Chalapathy and Chwala. ..18

Table 4.1: A Summary Table showing the models reviewed in the review.58

Table 4.2: Comparison of Frame Level AUC ..73

Table 4.3: Comparison of the RoC-AUC Scores ...102

x

LIST OF FIGURES

Figure 2.1: Illustration of the conceptual framework ..40

Figure 3.1: A Summary of the Research Procedure...48

Figure 4.1: C3D Feature Extractor internal architecture adapted from [17]63

Figure 4.2: Illustration of C3D feature extraction command ...64

Figure 4.3: Fully Connected Sultani Ranking model [22] ...64

Figure 4.4: Illustration of Sultani Model training on batch process [22]65

Figure 4.5: Output of the Sultani Model Testing [22] ...66

Figure 4.6: Illustration of the GAN [51] generator, discriminator...................................67

Figure 4.7: Testing of the GAN prediction model ...68

Figure 4.8: Output of the Liu- GAN [51] model testing using the Ped2 dataset68

Figure 4.9: Output of the Liu-GAN Model [51] testing using Ped1 Dataset69

Figure 4.10: Illustration of the regularity score computation function69

Figure 4.11: Chong and Tay Autoencoder Illustration ..70

Figure 4.12: Chong and Tay Autoencoder Regularity Score [50]71

Figure 4.13: Illustration of the Spatial-Temporal Model Architecture [50]75

Figure 4.14: Euclidean distance applied to calculate reconstruction error77

Figure 4.15: Regularity score and Abnormality score calculation...................................77

Figure 4.16: Frame extraction code for video data preparation78

Figure 4.17: Frames Extraction process ...79

Figure 4.18: High-level illustration of Max-pooling operation80

Figure 4.19: Spatial encoder, before the introduction of max-pooling81

file:///C:/Users/John%20Munyua/Downloads/Gatara%20-%20Thesis%20Ed%20III%20(1)%20(1).docx%23_Toc110866742
file:///C:/Users/John%20Munyua/Downloads/Gatara%20-%20Thesis%20Ed%20III%20(1)%20(1).docx%23_Toc110866743
file:///C:/Users/John%20Munyua/Downloads/Gatara%20-%20Thesis%20Ed%20III%20(1)%20(1).docx%23_Toc110866746
file:///C:/Users/John%20Munyua/Downloads/Gatara%20-%20Thesis%20Ed%20III%20(1)%20(1).docx%23_Toc110866747

xi

Figure 4.20: New encoder after addition of max-pooling2d ..82

Figure 4.21: Spatial Decoder before unpooling was introduced83

Figure 4.22: Spatial Decoder after the introduction of UpSampling2D83

Figure 4.23: Addition of the new layer with 98 filter size ...84

Figure 4.24: Addition of temporal encoder-decoder depth ..85

Figure 4.25: Addition of Spatial Decoder depth ..85

Figure 4.26: Enhanced model summary ..86

Figure 4.27: Training Dataset Preparation ...87

Figure 4.28: Enhanced autoencoder training process ..88

Figure 4.29: One class SVM Training Data creation ...91

Figure 4.30: One-Class SVM training process ..92

Figure 4.31: Test Dataset Generation ..93

Figure 4.32: A plot of the Case 001 video ground truth ..96

Figure 4.33: Before model improvement ...97

Figure 4.34: Output after enhancement ...97

Figure 4.35: A plot of ground truth in test case 002 ..98

Figure 4.36: Test Case 02: Before enhancement ...98

Figure 4.37: Test Case 002: After enhancement output...99

Figure 4.38: Test Case 003 Ground Truth Plot ..99

Figure 4.39: Test Case 003: before enhancement ..99

Figure 4.40: Test Case 003 after the enhancement ..100

Figure 4.41: Illustration of Anomalies in the test case 003 video..................................101

Figure 4.42: Sample data used for test of significance ..104

file:///C:/Users/John%20Munyua/Downloads/Gatara%20-%20Thesis%20Ed%20III%20(1)%20(1).docx%23_Toc110866767
file:///C:/Users/John%20Munyua/Downloads/Gatara%20-%20Thesis%20Ed%20III%20(1)%20(1).docx%23_Toc110866781
file:///C:/Users/John%20Munyua/Downloads/Gatara%20-%20Thesis%20Ed%20III%20(1)%20(1).docx%23_Toc110866784
file:///C:/Users/John%20Munyua/Downloads/Gatara%20-%20Thesis%20Ed%20III%20(1)%20(1).docx%23_Toc110866785
file:///C:/Users/John%20Munyua/Downloads/Gatara%20-%20Thesis%20Ed%20III%20(1)%20(1).docx%23_Toc110866786
file:///C:/Users/John%20Munyua/Downloads/Gatara%20-%20Thesis%20Ed%20III%20(1)%20(1).docx%23_Toc110866787
file:///C:/Users/John%20Munyua/Downloads/Gatara%20-%20Thesis%20Ed%20III%20(1)%20(1).docx%23_Toc110866788
file:///C:/Users/John%20Munyua/Downloads/Gatara%20-%20Thesis%20Ed%20III%20(1)%20(1).docx%23_Toc110866789

xii

ABBREVIATIONS

3D 3 Dimensions

3DCNN 3D Convolutional Neural Network

AI Artificial Intelligence

ANN Artificial Neural Network

AUC Area Under Curve

CCTV Closed Circuit Television

CNN Convolutional Neural Network

ConvLSTM Convolutional Long-Short Term Memory

DBN Deep Belief Networks

DBSCAN Density-Based Spatial Clustering of Applications with Noise

DSN Deep Stacking Networks

FCN Fully Connected Network

GAN Generative Adversarial Network

GMM Gaussian Mixture Model

HD High Definition

ILSVRC ImageNet Large-Scale Visual Recognition Challenge

LSTM Long-Short Term Memory

NVR Network Video Recorder

RBM Restricted Boltzmann Machine

RNN Recurrent Neural Network

ROC Receiver Operating Characteristic

STAE Spatial Temporal Autoencoder

xiii

UCF University of Central Florida

UCSD University of California San Diego

YOLO You Look Only Once

YOLOV3 You Look Only Once Version 3

1

CHAPTER ONE

INTRODUCTION

1.1 Background to the Study

Video surveillance has evolved hand in hand with photographic cameras. Rapid

improvements in networks, storage and processing have made it possible to capture digital

video data which can be processed in real-time [1]. Recently, video surveillance has

increased rapidly to enhance security. Technology growth has made video surveillance

evolve from analogue cameras to High Definition (HD) digital cameras which are

accessible over the internet through Network Video Recorders [2]. The growth of video

surveillance has given rise to the integration of security surveillance systems to address

the complex operational and security needs of organizations.

Video surveillance systems have become a critical part of the security and protection

system of modern cities, homes, and institutions. The video surveillance serves as a distant

monitoring tool for management and security forces. It is an important subsystem required

to complete a security plan. To achieve the goals of surveillance, closed-circuit television

cameras (CCTVs) have been deployed massively which gives rise to a large amount of

video data [3].

 China and India have been noted to have the largest dense number of CCTV camera

systems per square kilometer [4]. A metropolis called Chennai in India has the highest

number of CCTVs Installations per square kilometer, it has about 657 surveillance

systems deployed per square kilometer, which makes it the number one city in the world

2

in terms of security installations [4]. The projected trend of video surveillance is that data

will continue to grow since more cameras will continue to be deployed. Hence, the

introduction of cloud storage for surveillance data and online surveillance cameras like

Wi-Fi cameras [4].

Notable improvements in security surveillance include night vision. The night vision

feature allows cameras to monitor in low-lit and pitch-dark areas without loss of image

quality. Both video and image data collected are clear for analysis and monitoring [1].

The act of surveillance involves observation of sceneries with intention of identifying

specific behaviors, which are inappropriate, or in some manner indicate the possibility of

the emergence of improper behavior or activity. Traditionally, the effectiveness of video

surveillance required human intervention. People need to be on the lookout, in the control

room throughout to detect abnormal activities (security threats) [2].

Video surveillance can be applied to security systems and investigations when there is

proper monitoring. Proper monitoring involves having human monitors in real-time

keenly reviewing the surveillance footage to identify malicious or criminal activities. This

task requires an elevated level of commitment since anomalies are rare and can happen

within a few seconds. The increase in surveillance video data requires more human

monitors to effectively monitor. The human resource comes with additional associated

costs [3].

High-Definition Video requires large storage to capture the surveillance footage over a

certain period. This introduces the problem of storage since, large sets of data(videos) are

3

generated every millisecond of the surveillance, this increases the cost of storage. Hence,

the cost of storage is among the determinants of the duration in which, the videos are

stored [1]. The excessive cost of storage can be associated with the storage of unnecessary

footage. Researchers have made numerous attempts to achieve intelligent surveillance.

For instance, storage optimization, where the video management system stores the video

when any motion subject is sensed [5].

The growth of computing technology has given rise to advanced computing concepts like

artificial intelligence which provides complex cognitive processing paradigms like

machine learning and deep learning. These technologies have given birth to intelligent

surveillance [4].

Early attempts of intelligence surveillance include the integration of contactless solutions

to video surveillance like facial recognition, vehicle plate recognition, and thermal camera

body temperature screening to perform specific tasks using Internet of Things (IoT)

gadgets. Blending video surveillance with artificial intelligence enables the surveillance

systems to perform intelligent tasks like recognition of humans, vehicles, objects, and

events. The deep learning algorithms make comparisons with a reference object in

different postures, angles, positions, and movements [5].

The intelligent surveillance problem has spiked a lot of interest in computer vision

algorithms with researchers aiming to have smart models which can monitor the scenes

automatically. The act of identifying improper behaviors in surveillance videos can be

referred to as anomaly detection. For instance, some of the most popular anomalies

include violence, abuse, theft, traffic accidents, explosions, fighting, abuse, shooting,

4

weapons, stealing, vandalism, and shoplifting. Hence, the need to involve artificial

intelligence in this field [3].

Artificial intelligence borrows the intelligence behavior of humans and uses computer

systems to solve real-world problems like humans. Machine learning is a branch of

Artificial Intelligence (AI), that uses past experiences(data) to solve a given problem [6].

The machine learning algorithms analyses the historical data and uses that knowledge to

predict the future. An Artificial Neural Network (ANN) is an example of a machine

learning algorithm that borrows heavily from the human brain. The ANN uses parallel

networks with non-linear neurons that learn by adjusting the strengths of their

connections. To address more complex cognitive intensive problems many layers of

neural networks are stuck together. The stacking of many layers to solve complex

problems that require complicated internal representations led to a variant of machine

learning called deep learning.

The utilization of deep learning in video processing has shown promising results in areas

like automatic recognition of temporal and spatial events in videos. Deep Learning has

made it possible to train video analysis systems that mimic human behavior. In addition,

these systems can identify specific objects in an image and track their path. Therefore, the

presence of such technology forms a fundamental part of our abnormal scene detection

research [5].

Deep learning can be considered as a subset of machine learning whose algorithms are

inspired by the structure and functioning of the neural networks in the human brain. As

the name ‘deep’ implies deep learning is all about the scale where larger synthetic neural

5

networks are trained with a huge amount of data, while their performance and accuracy

continue to increase. This is notably different from other machine learning techniques that

reach a plateau in their performance [6].

Deep Learning algorithms have achieved exceptional performance in areas like image

recognition. For instance, AlexNet, Imagenet Large-Scale Visual Recognition Challenge

(ILSVRC-2012). Such achievements have provided the foundation knowledge for video

analytics research since a video can be broken down into frames then the frames can be

analyzed and processed like images [7]. Convolutional neural networks (CNN) have been

used in image processing since it works well for pattern recognition.

Another popular deep learning algorithm is Recurrent neural networks (RNN). This

algorithm is quite useful while modelling time-series data. Since video data is spatial-

temporal, RNNs preserve weights from sequential data. This network has made video

analytics possible [8].

However, recurrent neural networks (RNNs) are not immune to problems faced by

artificial neural networks such as vanishing/exploding gradient problems which limits

their performance. This led to the development of its variation called Long Short-Term

Memory (LSTM), which was developed by two Germany Scholars namely, Sepp

Hochreiter and Juergen Schmidhuber [9]. LSTM can preserve, the estimation error that

can be backpropagated through time and layers. This allows recurrent nets to learn over

many steps (over 1000) thereby opening a channel to link causes and effects remotely.

6

LSTM networks work well in the processing of sequential data but are limited to one-

dimensional data. This makes it hard for LSTM in its initial form to process video data

that is three dimensional. The memory cell of LSTM was replaced by a convolutional

layer to allow it to process spatial-temporal data hence the introduction of the ConvLSTM

algorithm which is widely used for video processing [10].

Deep learning algorithms are stacked together or joined in layers and then compiled to

work as a unit in a model. The models are designed using different learning architectures

and depending on the job they should do. Deep learning models are based on artificial

neural network variants and their design architectures are classified into supervised and

unsupervised learning The nature of the problem dictates the model design [11].

Most importantly, a model designed to pinpoint and alert anomalies in surveillance videos

can solve the storage problem since only the abnormal behavior footage will be stored

and less human power will be needed for a surveillance operation.

1.2 Problem Statement

Many deep learning algorithms have been implemented to detect anomalies in

surveillance videos [15]. Examples of the algorithms used include Convolution Neural

Networks [16], 3D Convolutional Neural Networks [17], Long- Short Term Memory

Autoencoder [18] and Conv-LSTM [19]. Chalapathy & Chwala [20] finds that 37.8% of

the deep learning anomaly detection solutions are made of Auto-Encoders (AE), while

29% are made of CNN constructs, both LSTM and RNN had 4% each. These findings

7

however do not find what model is the best for use while constructing a deep learning

solution for anomaly detection.

The challenge is determining the best algorithm among the anomaly detection models in

surveillance videos. Little research has been conducted in the evaluation of deep learning

models that are used for the detection of anomalies [21].

The second challenge is the high error rate in anomaly detection models. There are errors

present in the detection of anomalies. Both false positive and false negative alarms are

present in these models. The structure of the deep learning models affects their ability to

identify anomalies well making them prone to errors while detecting anomalies. The

quality of video representation and complexity scenes affects the performance of the

model.

This research, therefore, exists to contribute to two gaps namely the empirical

determination of the best deep learning model for the detection of anomalies in

surveillance video and the enhancement of the deep learning model to reduce the false

alarm rate.

1.3 Objectives of the study

1.3.1 Main Objective

The main objective of the study was to develop an enhanced deep learning model to detect

anomalies in surveillance videos.

8

1.3.2 Specific Objectives

To achieve the main objective, the study was guided by the following specific objectives:

i. To investigate empirically, the selected deep learning models used to detect

anomalies in surveillance videos with an aim of determining the best.

ii. To develop deep learning model that would optimize detection of anomalies in

surveillance videos.

iii. To validate the developed enhanced deep learning model.

1.4 Research Questions

To fully achieve the stated objectives, the study will seek to answer the following research

questions:

i. Which deep learning models are used to detect anomalies in surveillance

videos?

ii. How can the selected deep learning model be improved to reduce high error

rate?

iii. How valid is the developed enhanced model for anomaly detection in

surveillance videos?

1.5 Justification

Surveillance videos are an important part of our security systems, ranging from the

domestic, corporate and national levels. Surveillance equipment generates a vast amount

9

of video data at a remarkably high velocity. The generated video data require a large

amount of storage space so that in case of any incidents, the footage can be referenced.

The overwhelming abundance of surveillance video data expresses the need for intelligent

surveillance systems. Researchers have made numerous attempts to solve this problem.

For instance, Chong and Tay [19], Sultani et al. [20], Bansod [21] and many others [22],

[23] [17]. These solutions suffered from false alarm errors, and they need improvement.

This research sought to improve an existing model by modifying its architecture. Through

improvement the study reduced the error rate in the model. Reduction of the error rate

goes a long way to achievement of intelligent surveillance.

The study can ease the work of surveillance operators and be a significant contribution to

the field of computer vision. With the application of the research to optimize the storage

footage, if only the abnormal scenes are stored then a large amount of storage space can

be saved.

1.6 Scope of the Study

The study focused on improvement of the deep anomaly detection model. Anomalies were

taken as activities that deviated from the others. Anomalies included strange activities like

having bikes and motor vehicles which are prohibited in a park. Other real-world threats

to public safety such as Abuse, assault, traffic accidents, burglary, explosion, fighting,

robbery, shooting, weapons, stealing, shoplifting and vandalism were also considered

anomalies.

10

The study evaluated selected deep learning models used in anomaly detection and one

was selected for improvement. The selected model architecture was improved by addition

of more layers and optimization of the regularization functions. The enhancement process

was focused on improvement of the model structure through depth optimization. The

validation scope included comparison of the old model to the new enhanced model

accuracy. The accuracy was validated further through test of significance.

The study was confined within Deep learning technology that is a subset of Machine

Learning. Within deep learning the study focused on self-supervised models.

Autoencoder model was the selected model for improvement. Internal structure of the

autoencoder was optimized to increase the model accuracy.

1.7 Significance of the study

The importance of physical security in the real world cannot be underestimated. Video

surveillance has become a key component of any comprehensive security system.

Traditionally security surveillance provided video footage whether live or recorded. The

advancement of technology has introduced the concept of smart surveillance that intends

to provide knowledgeable insights from the video.

This study contributes to smart surveillance by providing means to improve the anomaly

detection models. The study focused on improving a deep learning model that detects

unusual activities by modifying the structure of the deep learning model to allow the

extraction of more features.

11

Therefore, the greatest beneficiaries of the study will be the security personnel since the

successful identification of anomalies will ease their work. Other contributions expected

from this study are to the field of computer vision where unmanned surveillance can

borrow heavily from anomaly detection.

Such contribution will improve the quality and efficiency of smart surveillance. Hence,

the improvement of the security by making it even easier for enforcers to identify

incidents in time and even deter crime.

1.8 Limitations of the study

The study focused on model improvement only. A model was chosen, and its architecture

was altered to improve its anomaly prediction accuracy. The study was limited to depth

tuning and model regularization enhancements. The study did not focus on the real-time

anomaly detection for live surveillance videos. The study did not focus on optimizing the

data structure to reduce its dimensions. The improvements were done to the model

structure and that’s what the study focused on.

1.9 Contributions of the Thesis

The research work made several contributions to the field of deep learning and smart

surveillance by enhancement of intelligent surveillance. These contributions are as

follows:

Improvement of anomaly detection accuracy by modification of the autoencoder model

structure. Depth tuning of the autoencoder increased the model capacity to draw features

12

from complex surveillance scenes that in turn increased the model accuracy to optimize

anomalies. The depth of the model was increased from 15 layers to 29 layers. Trainable

parameters increased from 1,958,209 to 3,710,157 parameters.

Autoencoder model refinement and rapid improvement of the architecture of spatial-

temporal autoencoders is another important theoretical knowledge contributed by this

research.

Another contribution is in the autoencoder models troubleshooting, debugging and

incremental design paradigm. This work takes an incremental stepwise deep learning

model troubleshooting approach to continuously refine the model and select the best

hyperparameters. The debugging knowledge can be applied in the designing and

refinement of autoencoders.

1.10 Organization of the Thesis

This thesis is organized into five chapters. The first chapter contains the introduction to

the thesis by highlighting the background information and the technology that has led to

the growth and development of this field. The initial chapter also describes the problem

found in the field, and how the researcher planned to address it, through the formulation

of objectives and research questions, this chapter goes further to establish the

delimitations of the study and it adjourns by providing a list of the contributions the study

made to its field.

Chapter two describes relevant literature to the field of smart surveillance and the topic at

hand. Chapter three details how the study was conducted through experimentation and

13

systematic review methodologies. Chapter four introduces the results and their

interpretations and finally, the last chapter summarizes the study, gives recommendations,

and gives suggestions for future works.

14

CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

This chapter will explore other related work to the study. It will start by investigating

available literature on popular deep learning models used in the detection of anomalies in

surveillance videos. The available literature on deep learning model enhancement shall

be explored as well. Most importantly, the datasets in this area will be considered, as well

as model improvement and validation methods.

2.2 Overview of Anomaly Detection Deep Learning Models

This section describes the technology behind the deep learning technology and the terms

encountered in anomaly detection. The section expounds on the theoretical framework

from which the research originated.

2.2.1 Understanding Deep Anomaly Detection

It is paramount to describe the meaning of anomaly detection in video surveillance since

it was the main subject of this study. [22] describes anomaly detection as a prominent

level of video understanding which sieves out the abnormal events from the normal

sequence of events [22].

15

The study is inclined to deep learning models that are used to detect anomalies. Therefore,

it is important to understand deep learning as a subdivision of machine learning and

artificial intelligence.

Ian Goodfellow gently defines deep learning as, “a form of machine learning that enables

computers to learn from experience and understand the world in terms of a hierarchy of

concepts. The hierarchy of concepts allows the system to learn sophisticated concepts by

constructing them out of simple representations” [23].

Deep Learning is a subcategory of machine learning which is encouraged by the design

and working of artificial neural networks (ANN) [12]. Deep Learning is sometimes

referred to as Deep Neural Networks (due to the depth of the neural networks used) and

is capable of learning features from structured and unstructured without supervision [8].

The inspiration for Neural networks is the way the human brain filters information. In a

way, these neural networks mimic the human brain. The said networks are capable of

learning unsupervised from both structured and unstructured data. [12] For Instance, in

our brains, a neuron is composed of a body, axon and dendrites. The signal(dendrites) is

transferred from one neuron to the other through the axon [8].

Therefore, the idea behind deep learning algorithms is that inputs are fed to the input layer

whose output is fed as input to the next layer and so on for several hidden layers until the

final output is achieved. As the name ‘deep’ implies larger neural networks with many

hidden layers are trained with a huge amount of data, while their performance and

accuracy continue to increase. However, this is notably different from other machine

learning techniques that reach a plateau in performance [8].

16

Deep learning utilizes several layers of non-linear processing elements for transformation

and feature extraction. The learning process creates a hierarchy of ideas where each level

acquires a more abstract and composite representation from input vectors [13]. Processing

at deep network nodes takes in the numerical data form, considering that each node has a

number that aids in determining its activation value. The activation value is calculated

from the connection weights and transfer functions and then it is passed to the next node.

These weights are how ANN decides where to pass the signals. Activation runs

throughout the network nodes until the output node is reached. Finally, the output node

transforms the information in a way we can understand [13].

The model performance can be calculated from the cost function since it associates the

estimated output and the actual output. To minimize the cost function, weight adjustment

is done which is referred to as backpropagation. Forward propagation alternatively, uses

information entered in input layers and moves forward through the different nodes to

produce output. Weight values are calculated and circulated backwards to update

weighted nodes and finally, the network is trained [24]. A feedforward network is

composed of input, hidden and output layers where the signal can only move in a single

direction (forward). These kinds of networks are utilized in data mining. On the other

hand, a feedback network allows signals to move in both directions. An example of such

a network is the recurrent neural network (RNN) [11].

Inside the network node, we have an activation function. An activation function

determines the output of a node. It can also be referred to as a transfer function since it

translates the input vector to the output vector [24]. The function transforms the output

17

values in ranges of 0 to 1or -1 to 1. In simple terms, the activation function is the rate of

action potential firing in the cell [25]. Common examples of activation functions include

threshold activation function, sigmoid activation function, hyperbolic Tangent Function,

and rectifier function [11]. The most popular models are selected using the criteria of the

most used model and with the best outcomes from various published research like the

review of deep learning models by Shrestha [8].

2.2.2 Selected Deep Learning Models in Video Anomaly Detection

The most popular deep learning models used to detect anomalies in surveillance videos

can be identified from the frequency of use by researchers. For instance, a survey by [20]

on Deep Learning for Anomaly Detection, identifies the following models as the most

popular; Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM),

Auto Encoders, and Convolutional Auto Encoders [20]. The table below shows the

models used in different research.

Deep

Learning

Model

Used

No. of

Times

Used

Referred use cases

CNN 11 Dongetal.[2016],Andrewsaetal.,Sabokrouetal.[2016a],Sabokro

uetal.[2017],Munawar et al. [2017],Li et al. [2017b],Qiao et al.

[2017],Tripathi et al. [2018],Nogas et al. [2018],Christiansen et

al. [2016],Li et al. [2017b],

18

AE-CNN-

LSTM

3 Chong and Tay [2017], Qiao et al. [2017], Khaleghi and Moin

[2018]

AE 14 Qiao et al. [2017],Yang et al. [2015],Chen et al. [2015],Gutoski

et al.,D’Avino et al. [2017],Dotti et al. [2017],Yang et al.

[2015],Chen et al. [2015],Sabokrou et al. [2016b],Tran and

Hogg [2017],Chen et al. [2015] ,D’Avino et al. [2017],Hasan et

al. [2016],Yang et al. [2015],Cinelli [2017],Sultani et al. [2018]

LSTM-AE 1 D’Avino et al. [2017]

LSTM 4 MedelandSavakis[2016],Luoetal.[2017a],Ben-AriandShwartz-

Ziv[2018],Singh [2017]

RNN 4 Luo et al. [2017b], Zhou and Zhang [2015] ,Hu et al. [2016],

Chong and Tay [2015]

Table 2.1: A table showing the usage of deep learning models used in video anomaly

detection adapted from Chalpathy and Chwala.

The concept of anomaly detection encompasses other areas like fraud detection, cyber

intrusion detection and other areas. This study however will only focus on anomaly

detection in surveillance videos.

2.2.3 Convolutional Neural Networks – ConvNet

Convolution can be defined as a category of linear operation that is used for feature

extraction. Convolutional Neural Network is a deep learning algorithm whose architecture

borrows heavily from the human visual cortex, where neurons are arranged in patterns

that overlay to span over the entire pictorial/graphic area. A ConvNet uses filters to

acquire pattern dependencies in images. The architecture of ConvNet reduces the images

19

into small matrices that are easier to process but maintains the distinctive features that are

important for acquiring a good prediction. A kernel is composed of a trivial array of

numbers, which is used across the input array also known as a tensor. Element-wise

multiplication between all parts of the kernel and the input array is computed at all parts

of the tensor, then summed to obtain the output value. The output value is also known as

the feature map. [25].

The building blocks of a CNN include the convolutional layer, Pooling Layer and Fully

Connected Layer. The usual architecture of CNN consists of the replication of a stack of

numerous convolutional layers and a pooling layer followed by a fully connected layer

[26].

The convolution layer is the foundation block of CNN which performs the biggest portion

of the CNN’s computational load. The pooling layer reduces the size of the representation,

therefore, decreasing the amount of computation and number of weights required. The

max-pooling reports the maximum output from the neighborhood. Pooling offers some

transformation invariance, which makes an object to be detectable irrespective of its

location on the frame. The fully connected layer (FC): The nodes in this layer are fully

linked with all the nodes in the previous and the next layer, which is like a regular feed-

forward neural network. Hence, it can be calculated normally using matrix multiplication,

followed by a bias effect. The FC layer is particularly useful in mapping the image from

the input to the output [26].

This technology has been applied extensively in image processing and anomaly detection.

For instance: a deep learning application known as AI Guardman uses pose estimation to

20

detect shoplifting. This application was developed by a tech startup called NTT East [27].

The application uses the OpenPose Technology from Carnegie Mellon University to

estimate the pose of a person and suspicious behavior is derived from the pose. OpenPose

was established by scientists at Carnegie Mellon University to approximate the posture of

a person instantaneously. This model can identify a person’s facial points, body and hands

from 3D and 2D images as well. Open Pose technology utilizes multitask learning, using

a Convolutional Neural Network. [28].

With the integration of Openpose technology, AI Guardman can identify and trail an

object's motion and behavior. This application is trained to identify suspicious behavior

like nervous customers and then it alerts the store clerk's smartphone and sends a mugshot

and location [27]. Some of the challenges faced and still present in the system are the high

error rates. The resultant application failed to distinguish shoplifters from indecisive

shoppers or widow shoppers. On several occasions, the system had flagged, customers

who pick up and put-back items, and salesclerks who restock shelves as potential

shoplifters.

Sabokrou et al. [29] developed a method of detecting and localizing anomalies in videos

aimed at detecting an anomaly in crowded scenes [29]. This model used Fully

convolutional Neural Networks (FCN) and sequential data. Their model utilized a

supervised pre-trained FCN to ensure the detection of anomalies in the scene. FCN

extracts distinctive features present in the video regions. Initial layers of the FCN

borrowed from a pre-trained Alexnet Model-which is a CNN model developed to classify

21

images and trained using the ImageNet (MIT Places Dataset). The extracted features are

discriminative enough to pinpoint anomalies in video surveillance data [29]

The shortcoming of the model includes the error rate margin, where the model labels the

motion of people going in different directions as abnormal behaviour [29].

2.2.4 3D Convolutional Neural Networks (3D- CNN)

Convolutions are filters (matrix/vectors) composed of learnable parameters that extract

low-dimensional features from input data. Instinctively, convolution is the step of using

the idea of sliding window (a filter with learnable weights) across the input and producing

a biased sum (of weights and input) as the output [30]. The weighted sum is the feature

space that is used as the input for the next layers. 3D-CNN is a type of CNN that utilizes

3D convolutions.

3D Convolutions applies a 3-dimensional filter across the input as it moves in 3-directions

(x,y,z) to compute the depiction of the low feature. The output matrix is a 3D volume

space, like a cube or cuboid. The 3D convolutions apply to video analytics like event

detection in videos [30].

Kushwaha et al developed another smart surveillance system to detect intruders [31] This

system implemented convolutional neural networks to detect motion and alert the

homeowners. Depending on the level of motion, the system flags intrusion and then

notifies the homeowner. This system pulls data/ live surveillance from a pi camera, then

22

it is forwarded to CNN to detect motion. Their system used Raspberry PI to process the

footage using the TensorFlow library of deep learning [31]

CNN is used to detect motion, thereafter they flag intrusion and alert the homeowner.

Although the use of deep learning improved the accuracy of the system. It is still

vulnerable to false alarms which can be raised by non-threat intrusion [31]. Another

challenge faced by the system is that motion detection is dependent on motion exceeding

a certain limit, otherwise, the system cannot raise an alarm. With the rapid growth in

complexity and increase of theft actions, their model could not effectively distinguish

threats from non-threats.

Sabokrou et al. [32] developed a dependable method to detect anomalies in crowded

scenes [32]. This model was composed of cascading classifiers with two main stages:

light-deep 3-D spatial autoencoder used to identify the initial cubic normal patches and

remaining video data is evaluated by a more complex deeper 3D-CNN. This model

achieves comparable performance to the other similar hi-tech models. Although this

model is only limited to crowded scenes rendering it less effective in generalized video

surveillance and flags people moving in different directions as an anomaly [32].

2.2.5 Recurrent Neural Networks – (RNN)

RNNs are part of deep learning algorithms that are crafted to extract patterns in

chronological(sequential) data. This type of network is appropriate for images that are

broken down into a group of patches that are treated as a sequence. Within recurrent

networks, decisions arrived at time step (t-1), affect the decision reached moments later

23

at time step t. The major shortcoming facing this kind of neural network is the vanishing

gradient problem, which limits its performance. This led to the development of an RNN

variation called, Long Short-Term Memory (LSTM) [10].

2.2.6 Long Short-Term Memory (LSTM)

Two German Scholars developed LSTM network namely: Sepp Hochreiter and Juergen

Schmidhuber to solve the problem of exploding gradient. They introduced forget gates

which preserve the backpropagated error through time and layers. This allows the LSTM

network to learn the features over many cycles (over 1000), thereby LSTM opens a

conduit to connect the causes and the effects remotely [9].

LSTM has gated memory cell where data is written and read from the cell, it is like how

a computer’s main memory works. The cells with help of forget gates make decisions on

weights to store and when access the reads, writes and erasures, through gates that close

and open. The forget gates were implemented through selective multiplication via

sigmoid functions which range from 0 to 1. Moreover, these gates acted on signals they

received and just like the neural network’s nodes; they pass or block the signal depending

on its strength and acquire features using their own set of weights [9].

The limitation of LSTM as to be applied in this thesis is that it only accepts 1-D data. For

purposes of video analytics where a sequence of images exists, both feature extractor and

sequence data modelling are needed. Hence, need to explore another variation of RNN

called Conv-LSTM, which combines the capabilities of Convolutional Networks and the

Sequential data processing capability of LSTM networks [10].

24

2.2.7 Conv-LSTM

Contrary to the LSTM Cell state, convolutional LSTM internal matrix multiplications are

exchanged with convolutions operations. Hence, the data that flows through the conv-

LSTM cell keeps the input dimension (3D in our case) instead of the 1D vector. This

algorithm considers both spatial features and temporal features from input data. This

characteristic of the Conv-LSTM makes it more suited for video analytics. Among the

ways of processing sequential images, the best approach is using Conv-LSTM layers [14].

Conv-LSTM varies from LSTM since the number of input dimensions in a Conv-LSTM

is different from LSTM. As input data accepted by LSTM is one-dimensional, which

makes LSTM not suitable for 3-D chronological data such as radar image data, satellite,

and video sets. Conv-LSTM on the other hand is crafted for spatial (3-D) data input and

processing [14].

2.2.8 Autoencoders

Medel and Savakis [19], implemented a Convolutional Long-Short Term Memory

Autoencoder Network (Conv-LSTM-AE) to predict the rate of change of video sequence

from several input frames [19]. They applied that technique to measure regularity scores

derived from the reconstruction errors of a set of predicted frames with abnormal video

sequences. The abnormal video sequences yield low regularity scores since they diverge

further from actual scores sequences over time [19].

The amalgamated Conv-LSTM-AE was composed of an encoder and a decoder which

learnt the regularity of videos from the non-overlapping patches of the frames from an

25

input segment. The network was trained to predict accurately normal actions like those

found in training videos. Hence, the prediction of abnormal videos diverges away from

the ground truth with each time stamp. Reconstruction errors are measured using a

regularity score which is used to determine when anomalies occur [19].

The architecture of the model is constituted of encoder and decoder parts. The encoding

part accepts the input sequence and reshapes it to a stack of non-overlapping patches. The

decoder part is composed of two decoders that is one reconstructs the past input video

sequences and the other predicts the future frames. Both decoders are initialized with

encoded input. The trained model with normal videos. Anomalies are identified by

inspection of the reconstructed and predicted since anomalous events are more likely to

stand out since the trained model was only trained with normal videos [19]. The challenge

faced by this model is the rate of false-positive errors.

2.3 Other technologies used in Anomaly detection

This section highlights the use of motion sensors and behaviour tracking to detect

anomalies. Other technologies that have been used to detect anomalies in surveillance

videos are discussed in this section.

2.3.1 Use of Motion Sensors

Kushwaha's pioneer work on the anti-theft system used motion sensors and a video

camera to point out cases of home intrusion [31] Their system used a video feed which

was broken down to images, which were preprocessed through background estimation,

background subtraction, outlier rejection, frame referencing and segmentation [31].

26

Several frames were used to estimate the background, then subsequent frames were

subtracted from the reference frame to detect anomalies in the objects. The nearest

neighbor search was then carried out to match previous and current images to pinpoint

anomalies. This system utilized a simple decision-making algorithm based on feature

matching. The first captured image was stored as the reference image, then if the current

image did not match the referenced image, the system generated an alert message, where

the user must determine the credibility of the alert if it is true or false and whether to take

any action. This system is limited to one camera only and the motion generated from

other objects other than intruders are picked as alerts. To address the shortcomings of this

paper Kushwaha developed another antitheft system that uses Convolutional Neural

Networks to detect motion [31].

2.3.2 Behavior Tracking based anomaly detection

 [33] is a classic case of behavior analysis. Farooq et al. [33] implemented a system that

utilizes unsupervised learning to detect anomalies in street traffic. This system puts

together various algorithms and models. Gaussian Mixture Model (GMM) was utilized

for the identification and tracking of objects. GMM was used to subtract background

scenes and identification of foreground objects. In addition, Kalman Filter is applied to

indicate each track. Features extracted from the live feed, include the position of the

object, orientation, trajectory, visible age in the scene and invisible account [33].

The model also utilizes the Euclidean distance to analyze the trajectory and calculate the

speed of the vehicles [33] From the trajectory’s dataset, clusters are calculated. Thereafter

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm is

27

used to cluster events based on features like age and angle. For instance, anomalous

activity like a sharp turn is identified when the object turning angle is greater than 56

degrees. Some of the contributions form the foundation for object tracking and detection

of behavioral analysis. One of the challenges faced is that traffic is more complicated.

Other than trajectories, enforcement of other traffic rules and continuous tracking of

vehicle behavior is not addressed [19].

2.4 Model Development Strategies

This section explores the literature related to model development and enhancement.

Different model design techniques are influenced by the nature of the problem. The art of

combining different algorithms to work as a single unit is widely explored.

To understand the strategies used in the model development process, it is critical to

understand what constitutes a model and the relationship between algorithms, models and

the training data. A deep learning model can be described as the outcome of training a

deep learning algorithm with the training data. The model is the product of the training

process [34].

On the other hand, deep learning algorithms are the general approaches to problem-

solving that borrows heavily from artificial neural networks for instance: CNN, LSTM

and ConvLSTM. The algorithms can be combined and implemented to have different

models. The model becomes the mathematical representation of the solution using a

specific pattern that can be applied to solve real-world problems. Many models can be

created from the same algorithm using different sets of training data [34].

28

2.4.1 Model Development Process

The development of deep learning models involves a myriad of activities which can be

summed up into several steps. The deep learning model development process is somehow

like the software development process. The development process involves; the initiation

of the deep learning project, preparation of the datasets, design of the model, visualization

of the model and metrics, debugging of the model and finally the improvement of the

model [34].

Initiation of a deep learning project involves understanding the problem at hand and

defining the expected solution. At this stage, researchers define a plan on how to achieve

the project objectives by defining the acceptable solution, ethical reservations, the

acceptable precision/accuracy score, and the nature of the problem i.e., classification,

regression, and clustering among others. The platforms and deep learning frameworks are

selected and optimized according to the project requirement and budget constraints. For

instance, for deep learning, a platform with a graphics processing unit (GPU) is required.

Cloud infrastructure provides scalable computing resources that are extremely useful in

deep learning projects. For instance, Amazon or Google Cloud [34].

The data preparation phase includes the creation of the training and testing data needed to

craft the model. After the problem is understood, the next step is to find the data that will

be used. The quality and the quantity of data are important in deep learning. The

preparation process involves identification of the data, cleaning of the data, preprocessing

and data transformation to the required shape. Data can be collected from public datasets

that have created specialized data for use in our problem domain. For instance, the

29

University of California San Diego (UCSD) has shared a video anomaly dataset called

Pedestrian 1 (Ped1) and Pedestrians 2 (Ped2) [35]. Other popular datasets include the

Shanghai Tech Video Anomaly dataset and the Avenue video anomaly dataset.

The design of the deep learning model begins with the identification and selection of the

software framework or platform to be used. The deep learning frameworks include

TensorFlow, Keras, Caffe, PyTorch, Caffe2, Apache MXNet and Microsoft Cognitive

Framework (CNTK) [34]. The most popular frameworks include TensorFlow and

PyTorch. The popularity of PyTorch can be credited to its user-centered design and user-

friendliness features. Its internal organization makes pre-trained models and popular

datasets easily accessible. On the other hand, TensorFlow is more popular due to its big

developer community that offers ready support and answers that guides the deep learning

researchers to avoid pitfalls. TensorFlow blends well with other intuitive Application

Programming Interfaces (APIs) and frameworks like Keras making it a popular choice for

many [36].

The next step is to visualize the model and the metrics. It involves a graphical

representation of the model performance and the input and output data to understand the

training process and easily debug it [37]. Deep learning requires video data to be scaled

from -1 to 1 by dividing the pixel values. A plot of such values is applied in counter-

checking that the data is between the range of -1 to 1. Scaled data ensures the network,

does not suffer from exploding gradient problems. Loss and accuracy of the training and

validation process are plotted to aid in the tracking of the model performance. The loss

30

plot is useful in tuning the learning rate, while the accuracy plot is useful in tuning the

regularization factors.

Debugging and improvement of the model are important in achieving the goals of the

model. Jonathan Hui, advocates for a rigorous debugging process that starts by overfitting

the model with a small amount of the training data and monitoring its training loss if it

significantly drops after 5000 iterations [38]. If the model loss drops, incremental

modifications to the model are suggested to ensure model depth. After model depth is

added, training with more data is advised and additional regularizations to control the

overfitting of the model.

2.4.2 Model Design Considerations

Although the model design is a part of the model development process, it requires more

exploration to uncover separate ways researchers combine and use deep learning

algorithms to make well-performing models. Some researchers use simple and

incremental design principle that dictates starting simple and building more into the model

[38]. Below are some of the design considerations that every researcher considers

achieving better performance in deep learning.

2.4.2.1 Use of Cost Functions

The design of deep learning models requires an understanding of the cost functions since

they affect the optimality of the solution. Cost functions are used to estimate the error

between the predicted values and the expected values. The returned values are called cost,

error or loss and can be applied to check optimal model parameters since at minimal error

31

model performance is high. Some examples of the cost functions include the mean

absolute error (MAE), mean squared error (MSE) and Cross Entropy. The MSE has good

mathematical properties that make it a better choice over the Mean Absolute Error (MAE)

since its derivative is easier to compute [36].

2.4.2.2 Scaling of Inputs

Deep Learning models use the training dataset to map the input and the output. Usually,

the training sets have the X and Y variables, with X as the input and Y as the expected

output [36]. The weights of the model are initialized to small random values and are

adjusted through an optimization algorithm during the training process. The size of the

input and output should be aligned to the small weights to lower the error [39].

Unscaled input variables result in an unstable and slow training process, while unscaled

output on regression problems can result in exploding gradient which makes the learning

process halt at some point. To deal with such design requirements, deep learning

researchers use standardization techniques to scale the input and output between 0 and 1

[36].

2.4.2.3 Batch Normalization

The problem of unbalanced nodes at the layer output before the activation function. To

smoothen the training process, it is advisable to normalize the output of the nodes. Batch

normalization is therefore applied to the Convolutional Neural Networks (CNN) to

normalize the outputs [36]. Batch Normalization computes the mean and the variance of

the spatial location, and it uses the same mean and the variance to normalize the node

32

output at each location. In Recurrent Neural Networks (RNN) layer normalization is used

instead [40]. Layer normalization is different in the sense that it calculates the mean and

the variance at every layer, which is applied to normalize the outputs of layer nodes.

2.4.2.4 Activation functions

Choice of activation functions has been noted to affect the performance of the models

hence, activation functions should be part of the interest in designing the deep learning

models. Activation functions take the output signal from the previous cell as input and

convert it to a form to be used as input to the next cell. For instance, Rectified Linear Unit

(ReLu) introduces non-linearity and Leaky ReLu replaces zero values with some

predefined value [38].

It has been found that non-linear activation functions are preferred in the deep learning

design since they limit their values to some range, hence preventing computational

overload. The most desirable feature of the activation functions in deep learning is the

introduction of non-linearity. Complex problems require a higher degree of complexity to

learn non-liner patterns [38].

Good activation functions should not shift the gradient to zero in deep layers to avoid the

vanishing gradient problem. These activation functions are zero centred and symmetrical

at zero to avoid shifting of gradients. The activation functions should be computational

inexpensive and differentiable in the gradient descent process.

Some examples of non-linear activation functions include sigmoid, softmax, tanh, ReLu

and LeakyReLu. Tanh and Sigmoid functions have been found to cause enormous

33

vanishing gradient problems and should not be used in deep learning [38]. On the other

hand, ReLu is good for a start, and it can be replaced with LeakyReLu if the dying ReLu

problem (model stops learning) is encountered [38].

2.4.2.5 Checkpoints Design

The incorporation of checkpoints in deep learning model design is an important design

consideration to enhance model scalability. The trained model epochs are saved to be

reloaded later. The saved checkpoints can be compared and the best load. This model

design paradigm allows the model to be trained continually even after the initial training

[36].

2.4.2.6 Addition of Custom Layers

In some cases of deep learning, custom made layers can be added to the model. Some

reasons that influence the creation of user-defined layers include unit testing of the

forward pass and backpropagation processes. Researchers, with intention of introducing

custom computational operations to the model, can add custom layers to the model [36].

2.4.2.7 Optimizers

Optimizers are the algorithms used to alter the attributes of the deep learning network.

Optimizers alter attributes like the learning rate and the learning loss in the deep learning

network. Optimizers can change the weights in the neural network. Some examples of

optimizers include the Gradient descent that is used in linear regression, Stochastic

34

Gradient Descent, Mini-Batch Gradient Descent, Momentum, Nesterov Accelerated

Gradient, Adagrad, AdaDelta and Adam [39].

Adam is the best optimizer for use in deep learning since it maintains a learning rate for

all parameters and adapts them separately as learning unfolds. Adam optimizer has four

parameters i.e., learning rate, the exponential decay rate for the first moment estimation,

the exponential decay rate for the second moment estimation and finally € denotes a small

value that replaces zeros to avoid division by zero [39].

2.4.3 Model Improvement Strategies

Deep learning models do not achieve perfect accuracy, but they can improve through

rigorous tuning and debugging processes to achieve comparable performance to the state-

of-the-art models or baseline models. The improvement process involves the systematic

analysis of the model structure to find areas of weakness. The model structure can have

areas of weakness in the model depth, dataset quality, model regularization and activation

functions.

2.4.3.1 Improvement of model capacity

Deep learning networks can be added with more layers to increase the learnable

parameters which in turn makes the model extract more features from the data. Some of

the considerations while model depth is being increased include the addition of small

filters since the small filters like 3x3 and 5x5 work better than larger filters [41].

35

The process of tuning models is purely empirical. That means the improvement is open

experiments with minimal known outcomes. The experiment is aimed at overfitting the

model by having, a deeper network that extracts more features from the model. Later the

overfitted models are toned down through regularization and dropout. The regularization

involves the introduction of layer normalization and dropout functions. This process is

repeated until the model improves its accuracy [41].

2.4.3.2 Dataset Collection and Clean-up

When analyzing the model with the intention of improvement, analysis of the dataset is

important. It has been noted that analysis of the false errors and true errors (bad

predictions) can be traced back to the low-quality dataset. If bad predictions are caused

by the dataset, it is advisable to preprocess the data or use a variety of datasets [41].

The collection of samples has serious effects on the model accuracy. For instance, if an

image dataset was to be used in a deep learning model, high-quality images are

recommended and filtering out the unwanted data in those images will increase the model

accuracy.

Complicated scenes in imagery and video datasets call for deeper convolutional networks

with smaller filters to untangle scene complexity. More data should be used to train the

model since deeper models have more trainable parameters which require a lot of data.

Data size threshold can be achieved through, the collection of data with variety and the

creation of variations of the same data through transformations such as reflections,

zooming and others. Therefore, the use of data augmentation is advised [41].

36

2.4.3.3 Learning Rate Tuning

While debugging the learning rate of the model, the non-critical hyperparameter can be

turned off or initialized to zero. In some cases of deep learning, the default learning rate

works well. However, depending on the nature of the data and the model, the learning rate

might need some tweaking [41].

For instance, the Adam optimizer has a default learning rate that gives rise to high model

performance. Learning rate should be among the last model improvement attempts after

the other parts of the model have been perfected and the model training loss has failed to

drop [39].

The usual learning rate is from 1 to 1e-7. Therefore, the best practice for tuning the learning

rate is reduction or increment of the rate by factors rate of 10. Deep learning engineers

recommend dropping the rate gradually with close monitoring of the model loss. It is

notable that when the learning rate increases the training loss goes up consistently and

vice versa [39].

Other hyperparameters that can be tuned during model improvement include mini-batch

size, regularization factors and layer-specific hyperparameters like the dropout. Mostly,

mini-batch size assumes either 8, 16, 32, or 64 values. However, it has been noted that a

small batch size has the smoothest gradient descent. Therefore, for models that take a long

training time, small-batch size should be used to ensure that, learning oscillations are

shorter and there is less training loss [11].

37

2.4.3.4 Model Regularization

The gap between the validation and training accuracy can be minimized through the

improvement of the validation accuracy which is usually achieved by tuning down the

overfitting within the model [42]. Model regularization mechanisms reduce the overfitting

within the model. Some examples of the model regularization include Dropout, Sparsity,

L1, L2 Activation Functions, Layer Normalization, and others.

Model regularization seeks to solve the problem of model generalization, which is the

ability of the model to perform well on new input test data. Regularization methods put

constraints on the model intending to introduce restrictions to the parameter values to

limit the capacity of the model [43]. A group of regularization mechanisms use parameter

restrictions while others add objective functions (Ω(ɵ)) which introduces a soft constraint

on the parameter values. The objective function can be introduced in neural networks.

Commonly used forms of regularization include L2 and L1 regularization. L2 is commonly

known as the weight decay since it pushes the weights toward the origin by addition of

the regularization term Ω(ɵ) =
1

2
||w||22 [42]. L2 makes the model use all its inputs rather

than leaving some of the inputs. It shrinks the weight vector by a constant factor before

gradient update. On the other hand, L1 introduces the sparsity property by making the

weight vectors awfully close to zero. At zero weight vector, it implies that the

corresponding features were discarded. Hence, reduction of overfitting [42].

Other than tuning the model, the improvement process can involve the use of different

deep learning algorithm variants or the introduction of new algorithms within the model.

38

A model that has Convolution Neural Network as the building block can replace the

ConvNet with 2DConvNets or 3DConvNet to extract more features depending on the

nature of the data. For instance, a Convolutional Neural Network-based image generator

can incorporate time sequence by adding the recurrent neural network to the model i.e.,

LSTM or ConvLSTM [41].

2.5 Deep Learning Models Evaluation and Validation

In similar research work, researchers use the systematic review to determine the best deep

learning models in anomaly detection. Different models are analyzed, and their accuracy

scores are tabulated and compared to reveal underlying patterns. Experiments are set up

using the selected deep learning algorithms then several parameters like training and

performance are evaluated. For instance, an empirical study that evaluates deep learning

networks used in anomaly detection utilizes various metrics. Some of the measures used

in these papers include training time and model accuracy to evaluate training complexity,

and F-measure (F1-Scores), which are used to estimate the performance of the model. F-

measure combines precision and recall which are particularly useful in measuring the

accuracy of classification. Another important metric used is Mattew Correlation

Coefficient (MCC)which is used to estimate the quality of binary classification. The

coefficient value is interpreted -1.0 (poor), 0.0 (random) and 1.0 (good) [44].

[45] describes how to evaluate the performance of the deep learning models through

confusion matrix, accuracy, precision, specificity, F1 Score, Precision-Recall or PR curve

and Receiver Operating Characteristic (ROC) curve. Terms introduced here include, True

Positive (TP) which indicates the predicted positive is positive, and False Positive (FP)

39

which indicates that the predicted positives are negative. In addition, True Negatives mean

that the projected negative is negative and finally the False Negatives indicate projected

negative is positive [45]. Limited research has been conducted on the assessment of deep

learning models used in the identification of anomalies, specifically in surveillance

videos.

Better evaluation models as indicated by Nighania [49] include Precision which is

calculated by the percentage of the total predicted positive instances. It answers the

question, ‘What percentage is the model right when it is saying is right’. It is given by

True Positives divided by the total of all positives. Recall/ Sensitivity/ True Positive

Rate measure describes the percentage of positive instances (TP) out of the total actual

positive instances (TP+FN) in the dataset. The measure determines, ‘the number of right

outcomes the model missed. Specificity is another measure that calculates the percentage

of negative instances (TN) out of the actual negative instances (TN+FP) [45].

Recommended metrics by Nighania include the PR (Precision and Recall) Curve, which

is a plot of precision and recall for various threshold values. The top right part of the curve

portrays an ideal space where we get high precision and recall. The choice of predictor

and threshold values are dictated by the type of application. ROC Curve (Receiver

operating characteristic) is plotted against True Positive Rate and False Positive Rate.

ROC AUC is the area under the curve and the higher its numerical value the better. True

Positive Rate (TPR)= Recall = while false positive rate (FPR) =1- Specificity = [45].

This literature provides ways to evaluate and validate the models which played a major

part in our research.

40

2.6 Conceptual Framework

The literature review found the following relationships among the ideas within the

research study. The reviewed theories revolved around the model architecture, dataset

quantity, quality of data preprocessing and the model prediction accuracy. Figure 2.1

below illustrates the conceptual framework.

Figure 2.1: Illustration of the conceptual framework

Independent Variables

Model Architecture

Dataset Quantity

Dependent Variable

Anomaly Prediction

Accuracy Score

Data Preprocessing

Feature Extractor

Appearance, shape, motion

& trajectory features

41

2.7 Summary

In conclusion, the literature review identified the main gaps: First the literature has shown

immense growth in the detection and identification of abnormal scenes like violent scenes

within surveillance videos. Deep learning models have been used to detect anomalies. Yet

there is still a challenge in identifying which is the best model among all those

implementations. The research gap exists in finding out empirically the best deep learning

model for use in anomaly detection specifically in surveillance videos.

Secondly, although the best performing deep learning models used to identify and localize

anomalies include 3D-CNN, Conv-LSTM (Composite Neural Network) and Conv-LSTM

(auto-encoder). Although they have achieved quite commendable performance, we have

seen that there are still errors present while detecting anomalies in surveillance videos. A

research challenge exists in improving the accuracy of the deep learning models.

42

CHAPTER THREE

METHODOLOGY

3.1 Introduction

This chapter describes how the research itself was conducted. Research methodology

links theory and the data for purposes of analysis thereby gaining insights into the research

problem. Strategy and methods are well aligned for the research study.

3.2 Research Design

The research design that was used to conduct the research was a systematic literature

review and experimentation. This chapter explores the two research methods extensively.

3.2.1 Systematic Literature Review

To gain full insight into the research problem and form a basis for a solution. A systematic

Literature Review was used to gather the relevant knowledge to conduct the study. In the

first objective, a review of the deep learning models used in video anomaly detection was

conducted. Opensource papers published since 2016 in this area were analyzed and the

available deep learning models were identified and ranked. The review discovered the

underlying technologies and trends in video anomaly detection using deep learning.

3.2.2 Experimentation

Experimental Research Design applies a scientific approach to the research problem by

allowing variables to be manipulated and their effects on other variables to be measured

43

[46]. This research strategy is common in deep learning research due to its nature of

allowing the comparison of different models with a forthright logic.

True experimental research design was adopted. True experimental research design relies

on statistical evaluations to approve or disapprove research hypothesis. True experimental

design established a cause-and-effect relationship within the study. This research design

required the study be formed with a control group which was taken as the model before

enhancement. True experimental design also required an independent variable. In the

study, the model depth (learnable parameters) is taken as the independent variable.

A pre-test posttest-only control group design was used. The model’s accuracy was tested

before and after the enhancement. The control group was composed of the test cases

before the model was enhanced while the experimental group was composed of the

enhanced model test cases. The accuracy of both control and experimental groups were

tabulated and their differences are analyzed further.

Our research problem required a comparison of the model before and after experiment to

point out the impact of the improvement done to the model. The experimental design was

best suited for the problem at hand. Other researchers have applied the same methodology

to similar problems. For instance, [47], [48], [22], [49].

Two classes of the experiments were set up. The first set of experiments was used to

investigate 3 chosen models from the reviewed models. The second set of experiments

was used to improve the selected model and validate the improved model.

Experimentation allows the comparison of the models by feeding the different models

44

using the same dataset and running the model using similar computing resources. That

allowed the performance and effectiveness of the models to be compared. Similarly, while

improving the model, experimentation was used where model parameters of the selected

model were optimized to increase accuracy while the existing model was used as the

control group to establish the improvement done.

To identify the most effective deep learning model for the identification of anomalies in

surveillance videos, Multiple Instance Learning [22], Spatial-Temporal

Autoencoder(STAE) [50] and Generative Adversarial Network [51] were implemented to

determine the most appropriate for use in anomaly detection of surveillance videos.

A comparative empirical study was conducted to analyze the effectiveness models in

identifying anomalous activities. The models indicated above were then trained and tested

while various metrics like precision, specificity, ROC curve and PS curves were used to

provide empirical evidence of the best model.

The selected deep learning model was enhanced through various improvements to the

model. The enhancements included optimization of the model hyperparameters and

systematic code review.

The final part of the study involved validation of the improved model, a comparative study

through the ROC curve and Precision and Recall (PR) curve. The plot of both models, old

and improved can provide enough validation evidence of the improvement by running the

model across 2 validated datasets.

45

The datasets were downloaded from public datasets like the UCF database of real-world

anomalies [22], UCSD database of crowded scenes on a sidewalk [35], Shangai Tech

database of staged sidewalk surveillance and some of the codes borrowed from GitHub.

3.3 Design of the Experiment

Experiments were set up in Google Collab and Google Cloud due to the computation

power required. Google Collab offered ready to deploy platform which was especially

useful for writing code and debugging the code before large-scale deployment. Since

Google Collab is free it allowed stepwise debugging and incremental enhancement of the

model. For lengthy training and testing, the Google Cloud platform was used due to its

stability and infrastructure scalability. Google cloud offers infrastructure as a service and

scalable computing resources on-demand, which are quite suitable for the running of deep

learning experiments.

Python-based frameworks and libraries were used for the experiments due to their wide

documentation and suitability in deep learning libraries like Keras and TensorFlow. In

addition, it has shown the best results while solving data science problems.

The model improvement was done using Python 3.7. The hybrid model was crafted under

Anaconda Development Environment, which puts together all frameworks needed like

OpenCV. TensorFlow, Keras. Matplot, FFmpeg and sckit-learn libraries. The libraries

were configured to work in jupyter-notebook for interactive coding in both Google Collab

and Google Cloud.

46

The projects were set up and run through the Jupyter notebook integrated development

environment (IDE). Divergent functions were integrated from input, processing and

output programs. Both training and anomaly prediction accuracies were recorded for

comparative study. A common dataset was selected from real-world anomaly datasets

which was used for training and testing the selected models and then the most suitable

model was selected for enhancement.

The data needed during the research was surveillance videos that had diverse types of

real-world anomalies like violence, burglary, weapons, running, crowding and others

which are unusual. Since a comparison among multiple models was done, a large, diverse,

and balanced dataset to reach a convincing conclusion was used. Purposive sampling was

used to select existing datasets from public deep learning research centers which are

available online [52]. Purposive sampling was adopted to ensure the datasets used by the

old models were the ones used to train the improved model. Purposive sampling was

considered due to its non-random criteria. Purposive sampling is referred as judgement

sampling was due to its ability to base sampling on the researcher judgement. Researcher

had the power to select the most information rich datasets [52] that benefited his study.

Homogeneous sampling technique was used to acquire a homogeneous sample of dataset

that contains only surveillance videos. The sampling technique focused on the datasets of

that were used in analyzed papers and the improved model. A video dataset that was large

enough for deep learning and surveillance anomalies rich videos were considered. For

instance, for deep learning models’ a big dataset is required for training and testing.

47

Some of the tools which were used to extract frames from the videos include the FFmpeg

video library. FFmpeg library is a code library that allows manipulation of the videos and

breaking down of the videos to get images. Only a computer with the internet was used

to download and prepare the dataset for use in model training and validation.

Recently released large-scale real-world anomaly detection benchmark, UCF (University

of Central Florida) Crime, UCSD (University of California San Diego) Ped1 and Ped2

[39] were used to evaluate our model improvement [55]. These datasets consist of 1900

real-world surveillance videos, half of which contain anomalous events and the other half

normal activities. For the anomalous videos, violent scenes, intruders in the park,

commotion, and running were the majority anomalies. The training split and testing split

were based on the model architecture since some models required to be trained with only

normal videos and tested with anomalous videos.

3.4 Research Procedure

Implementation of study can be categorized into three main phases namely: investigation

of chosen deep learning models to determine the most effective, development of an

improved deep learning anomaly detection model and finally validation of the developed

deep learning model.

The research procedure can be summarized in a simple diagram. Figure 3.1 above,

illustrates the research procedure. The arrows indicate the flow of activities between the

objectives and the activities. Figure 3.1 indicates major portions of this research.

48

3.5 Data Analysis

Data analysis describes how the data was collected from the experiments and how the

data was processed to gain some insights into the research problem.

3.5.1 Deep Learning Models Evaluation Experiment

Evaluation of the deep learning model’s accuracy utilized the following measures: PR

(Precision-Recall) Curve, which is a plot of precision and recall for various threshold

values. The top right part of the curve portrays an ideal space where we get the highest

accuracy and ability of the model to remember.

1. Determining the best deep learning model for anomaly detection

Implementation of the

popular deep learning

models: 3DCNN, LSTM,

Comparative study, to

determine the best

2. Develop Enhanced Deep Learning Model

Model Parameters

Optimization

3. Validation of the Enhanced Deep Learning model

 Comparative Study of the Enhanced & Existing Model

Selected Deep

Learning

Model

Enhanced Deep

Learning Model

Model Debugging

Figure 3.1: A Summary of the Research Procedure

49

 ROC (Receiver operating characteristic) will be plotted against valid positives TP Rate

and invalid positives FP Rate. ROC AUC is the area under the curve and the higher its

numerical value the better.

True Positive Rate (TPR)= Recall while,

False positive Rate (FPR) =1- Specificity [45].

The accuracies scores of the evaluated models were recorded and tabulated. Their

accuracy score in different datasets was averaged for ease of comparison.

3.5.2 Validation of Enhanced Model Experiment

The best-selected model was improved, then trained and validated. Then, both training

and testing accuracies were recorded for the enhanced model and control model. The

accuracy values were captured in a table for purposes of comparison. To test the model's

effectiveness, the video-based ROC curve and corresponding area under the curve (AUC)

were calculated to evaluate the accuracy of the model [53].

The area under the ROC curve (AUC-ROC) is an independent metric of the model

accuracy [53]. The Receiver Operating Characteristic (ROC) curve is the plot of

sensitivity versus specificity. Specificity can also be referred to as the false positive rate

while sensitivity is the rate of the true positive. Then to find a single value to indicate the

model performance, the area beneath the curve commonly known as (AUC) is calculated.

AUC is the ratio of the area underneath the curve and the total area. The AUCs of the

ROC curve shall be tabulated together for comparison.

50

After accuracy was tabulated, a test of significance was conducted to establish if the

enhancement was statistically significant.

3.6 Summary

This chapter has described the procedure that was followed to conduct the research. In

summary, it involved evaluation of the popular deep learning model, implementation, and

improvement of the selected model. It also described the model evaluation metrics that

were used to validate the enhanced model.

51

CHAPTER FOUR

RESULTS AND DISCUSSION

4.1 Introduction

This chapter is dedicated to the implementation of the study objectives. The first objective

was to investigate empirically the deep learning models used in anomaly detection in

videos to determine the best. The chapter starts by introducing the deep learning model

architectures, published models since 2016 that were reviewed and tabulated. The

considered models are implemented, and their performance is compared with the

published accuracies and the best pure deep learning solutions are selected. The second

objective was to improve the selected deep learning model for the discovery of anomalies

in surveillance videos. The third objective was to validate the improved model. This

chapter also describes the data preparation process, the improvement process, the outcome

and finally the validation process.

4.2 Deep Learning Models

The main purpose of the study is to enhance deep learning anomaly detection models

using depth tuning. It is important to understand what a deep learning model entails and

the distinctive design architectures. Deep learning models are composed of neural

network variants that are multilayered. The architecture of deep learning models is

extremely flexible since the models can differ in the number of layers, filter size and

dimension, as well as the basic constructs. Models used in the detection of anomalies in

videos have Convnets, ConvLSTM and 3DCNN as the basic building blocks [20].

52

A layer within a deep learning model is composed of interconnected nodes(neurons). A

node may be connected to all other nodes in the adjacent layers or not. Data fed through

the model goes through each layer and is transformed into an abstract representation also

known as extracted features. The training process sets the weights across different

transformation functions. Then the model modifies the weights using backpropagation

where the output is traced back to the input modifying the weights.

Researchers have utilized this knowledge to design models using deep learning

frameworks like PyTorch, Keras, and TensorFlow. A model can be composed of different

deep learning algorithms. Different deep learning algorithms are stacked together to

produce a model. For instance, a model may have Conv2D, and ConvLSTM, layers

combine to get a model that works for sequential problems using high dimensional data

like videos. Problem nature inspires the model design [54].

Hybrid models combine several deep learning models, which are optimized to work

together. In some cases, like Sultani multiple instances learning model [22], it combines

a pre-trained feature extractor and another model to rank an anomaly score of the bagged

normal and abnormal scenes. Some of the pre-trained models that have been used

extensively to extract features from videos include the Facebook C3D Model [22],

Inception v3 [55], YOLOV3 and open pose technology from Carnegie Melon university

[27]. These models are used to extract features like, motion, objects and even body

posture. Those features are transferred to another model that is trained to identify

anomalies in the features.

53

4.2.1 Review of the Deep Learning Models in Anomaly Detection

A review of deep learning solutions for anomaly detection in surveillance videos,

published since 2016 was conducted. Open-source publications were considered, due to

their unlimited availability. The systematic review was conducted in Google Scholar,

Science Direct, Elsevier Journal Finder and ACM digital library due to their extensive

ability to list the publications from peer-reviewed journals.

The review aimed to provide a holistic map of the published deep video anomaly

solutions, track their growth and the trends in this active research area to rank the best

models in the area. Intelligence surveillance is still an active research area due to its

extensive application in security.

The nature of the reviewed models includes supervised, weakly-supervised and

unsupervised learning. Supervised models are somehow limited to specific anomalies

since anomalies are many and are subjective. For instance, some models are limited to

traffic anomalies [33], home intrusion and violence [31]. Supervised solutions have failed

to generalize the anomalies since the definition of anomalies is subjective and labelling

of all anomalies is complex since anomalies are rare within videos. For instance, within a

video clip, only a few frames have anomalies.

The weakly supervised class of the models utilizes small, labelled data while the rest of

the data is unlabeled. This is a very common trend in deep learning especially in hybrid

solutions [47] [56] [57]. The hybrid models contain two or more deep learning models.

In some cases, the hybrid solutions are typical cases of transfer Learning.

54

4.2.1.1 Transfer Learning

Transfer Learning describes the handover of the knowledge from one model to another.

This approach uses an already pre-trained model to solve a different task. Transfer

learning is useful when there is a scarcity of data or computational resources since it

allows the models to use less data by re-using the learned weights from the pre-trained

model.

 Transfer Learning was found as a growing trend in video anomaly detection and deep

learning. One strategy of implementation of transfer learning through feature extraction.

Pretrained models were used to extract features from labelled video and imagery data.

The pre-trained models used mostly in the reviewed models include Facebook C3D Model

[22], I3D [55], and YOLOV3.

Facebook C3D borrows from BVLC Caffee which was modified to support 3D

Convolution and pooling [17]. C3D model was trained by Facebook Researchers on sports

videos to extract features from videos. Which can be useful in down sampling the dataset

for effective processing. The pre-trained model has been used in various models. For

instance, [22] utilizes C3D for feature extraction in their paper. The model is set to input

a video and then it extracts a tensor of 4096 features.

The use of pre-trained models to extract features from videos appears as a growing trend

in anomaly detection research. Other feature extractor models that were found include

Inflated 3D, which is a pre-trained model on the Kinetics-400 dataset [58]. It extracts

55

features from videos and gives an output of shape 1024. By default, frames fed should be

of size 224x224 and video to be recorded at 25 frames per second (fps).

Another important feature extractor used by researchers [59], [60] is You Look Only Once

Version3 (YOLOv3) which is a deep convolutional neural network that identifies specific

objects in videos or images. YOLOv3 is an improved version of YOLOv2 that borrows

heavily from the DarkNet model that was trained on Imagenet. YOLOv3 combines two

53 layers of Darknets to form a deep 106-layer network [61]. Object detection in the

model happens within three separate locations. First Detection happens at the 82nd layer

that uses a 1x1 kernel, the second detection happens at the 94th layer that uses a 2x2 kernel

and the third detection occurs at the 106th layer that uses a 2x2 kernel. The model also

predicts bounding boxes on the objects and draws them around the objects and labels the

objects. This detector was used to extract objects from videos which were used to define

anomalies and normal scenes, on which anomaly detection was based on.

Transfer learning was identified in the following papers, Sultani [22], that used C3D pre-

trained model combined with a light classifier to assign a ranking score for the normal

and abnormal instances. The C3D model was used for feature extraction. Motion and

trajectory features were extracted from the real-world UCF crime dataset.

[62] used pre-trained CNNs in anomaly detection. Nazare [62] explored several CNN

networks including VGG-16, ResNet-50, Xception and DenseNet-121.Their paper [62]

investigated the role of pre-trained image classifiers in feature extraction to solve the

problem of anomaly detection. The paper found that the Xception model outperforms its

counterparts, and it can be used for features extraction even though the whole idea

56

performs poorly compared to other anomaly detection methods. Other examples of

transfer learning found in the review include [63], [48], [60], [59], [58], [64], [65], [51].

4.2.1.2 Autoencoders

Autoencoders are a substantial part of the survey, out of 30 papers reviewed, 11 papers

were found to have used the autoencoder model design paradigm. Which is around 36%

which is significant statistically. Thus, autoencoders can be considered a growing trend

in video anomaly detection. Autoencoders are widely used due to their unsupervised

nature, and ability to learn without human supervision or labelled data. The golden idea

behind autoencoders is the reconstruction error that arises after when reconstructing the

abnormal frames. The reconstruction error of the irregular videos is larger than regular

videos. This idea is applied in designing models that detect anomalies in videos.

The autoencoders found in the review have different architectures and deep learning

algorithms. For instance, [66] integrates a Conv-AE and Inception Module to form a deep

autoencoder that detects the appearance and motion features from the videos. The decoder

part of the model has two units that are dedicated to motion and appearance.

Duman and Erdem autoencoder [56] is composed of Convolutional Autoencoder and

Convolutional LSTM. This framework uses Optical Flow to extract features of speed and

trajectory from the videos. The optical flow output is fed to the autoencoder which returns

the reconstructed optical flow map. The reconstructed output is subtracted from the input

to acquire the mean squared error that is used to calculate the regularity score that

indicates the abnormality level of every frame. [67] implemented an unsupervised

57

solution for anomaly detection in crowded scenes that was based on autoencoder design.

The model was constituted of Conv-LSTM. Raw image sequences and edge image

sequences were used to train the model.

Spatial-Temporal autoencoder [68] is another variation of the autoencoders encountered

in the review. This model was made by [69] in their paper named Spatio-Temporal

AutoEncoder for Video Anomaly Detection. Their model is composed of 3D

convolutional layers. The architecture of the network is made up of an encoder and two

decoder branches. The decoder branches consist of the prediction branch and

reconstruction branch. The two branches are used to create the prediction loss function

and reconstruction loss function that are used to estimate the regularity score for

anomalies locating.

Pawar and Attar autoencoder is hybrid of convolutional autoencoder and LSTM

autoencoder [21]. This presents another design paradigm of combining two different

autoencoders to create a seamless model. The convolutional part takes care of the image

part while the LSTM preserves the sequence. Reconstruction error is used to model the

regularity score.

Variational Autoencoder is an improvement of autoencoders that employs the use of

probabilistic modelling to select the best reconstruction from the latent space. Unlike the

normal autoencoders that encode the latent space as a single point, variational

autoencoders generate their latent space as a distribution. [70] exploited this architecture

to create a two-stream variational autoencoder to detect anomalies in both local and

streaming videos.

58

Other unique autoencoders found include Bhakat and Ramakrishnan [71], Mahmudul

Hasan et al. [72], Sabokrou and Fathy [49] and another case of Spatio-temporal

autoencoder by Chong and Tay [50]. The Spatio-temporal autoencoder is different due to

its building constructs. It employs time-distributed layers wrapped in conv2d layers for

the spatial part and convlstm2d for the temporal part.

4.2.1.3 Ensemble Learning

Other reviewed models are random cases of ensemble learning that combine multiple

learning algorithms to get better predictive performance than the constituent learning

algorithms alone. For instance, Zahid et al. [58] is a typical case of ensemble and transfer

learning. The model combines a 3D convolutional network and a Fully Connected (FC)

Network [58]. [73] is another case of ensemble learning that combines Conditional

Generative Adversarial Networks, R-CNN and Support Vector Machines (SVM).

4.2.1.4 A Summary of the Deep Learning Solutions

A summary table of the models reviewed their learning technique and underlying deep

learning algorithms are illustrated in table 3:

Table 4.1: A Summary Table showing the models reviewed in the review.

Publication Learning

Technique

Deep Learning

Algorithm/Models

Datasets Overall

Accuracy

Chong and

Tay [50]

Auto-encoder ConvLSTMAE UCSD Ped1,

UCSD Ped2

87%

Sabokrou et

al. [49]

Auto-encoder Sparse AE & Non-

Sparse AE

UCSD Ped2

& UMN

90.8%

Hasan et al,

[72]

Fully Conv Feed

Forward Auto-

encoder

FC Convnet AE UCSD Ped1

UCSD Ped2

83.18%

59

CHUK

Avenue

Chalapathy

 et al. 2017

[74]

Robust PCA PCA Cifar10 89%

Sultani et al.

[22]

Multiple Instance

Learning (MIL)

C3D, FC Convnet

SVM Classifier

UCF Crime

Dataset

75.41%

Nguyen [75] Generative

Adversarial

Network

GAN- Generative

Adversarial

Network

AI City

Challenge

91%

Xu et al [70] Variation Auto-

encoder

2 stream

Variational

Autoencoder

(VAE) / GAN

- -

Doshi and

Yilmaz [76]

Continual

Learning

YOLOv3

KNN -K- Nearest

Neighbors

UCSD,

Avenue,

Shangai Tech

85%

Kavikuil and

Amudha [77]

Feature Learning CNN - -

Liu et al. [57] Transfer Learning Binary Networks,

3DCNN

citySCENE 94.6%

Ullah et al.

[64]

Ensemble/Transfer

Learning/

CNN, Residual

LSTM

UCF,

UMN,Avenue

98.3%

Vu et al. [73] Ensemble

Learning

R-CNN, SVM,

CGAN

Avenue,

UCSD Ped1,

Ped2, Shangai

Tech

91.7%

Cinelli et al.

[65]

Residual Network ConvNet CDNET2014 84.9%

Bhakat and

Ramakrishnan

[71]

Auto-encoder ConvLSTM Avenue,

Surveillance

Office, Police

73.6%

Ullah et al.

[78]

Transfer Learning Pre-trained CNN,

BD-LSTM

UCF Crime 89.05%

Zahid et al.

[58]

Transfer &

Ensemble

Learning

Fully Connected

Network, Inception

V3,

UCF Crime -

Murugesan

and

Thilagamani

[79]

Ensemble

Learning

MLP-RNN - -

Nazare et al.

[62]

Transfer Learning Pre-trained CNNs UCSD Ped2 76%

60

Aberkane and

Elarbi [47]

Reinforcement

Learning

Deep Q Learning

Network (DQN),

UCF Crime -

Bansod and

Nandedkar

[63]

Transfer Learning Pre-trained CNN

(VGG16)

UCSD, UMN

Cinelli [48] Transfer Learning Pre-trained CNN

ResNet

CDNET2014 85%

Pawar and

Attar 2021

[80]

Auto-Encoder ConvAE, LSTM

AE

- -

Zhao et al.

[69]

Spatial Temporal

Auto-encoder

(STAE)

ConvLSTM UCSD Ped1

& Ped2,

CUHK

Avenue

86.8%

Ramchandran

and Sangaiah

[67]

Auto-Encoder ConvLSTM UCSD Ped1

& Ped2

-

Duman and

Erdem [56]

Auto-Encoder OF-ConvAE-

ConvLSTM

Avenue,

UCSD Ped1,

Ped2

91.53%

Doshi and

Yilmaz [60]

Transfer Learning Pre-trained

Convnet

(YOLOV3) &

Least Square

Generative

Adversarial

Network LS-GAN

CUHK,

UCSD Ped2

& Avenue

84.83%

Nasaruddin

[81]

Transfer Learning 3D-CNN UCF Crime 95.4%

[82] Khaleghi

and Moin

- CNN UCSD -

Doshi and

Yilmaz [59]

Transfer Learning Pre-trained

Convnet

(YOLOV3) &

GAN

UCSD PED2,

CUHK,

Shanghai

Tech

84.87%

Nguyen [66] Auto-encoder

Hybrid

Conv-Net, GAN UCSD Ped2,

CHUK

Avenue,

Subway

Entrance, Exit

91%

Liu et al. [52] GAN GAN CHUK,

UCSD Ped1

& Ped2,

Shanghai

Tech

83.76%

61

From the summary table, it can be noted that the best performing model in terms of

accuracy is Ullah et al.is a typical case of transfer and ensemble learning that combines a

CNN feature extractor with a residual LSTM network [78]. This model yields an overall

accuracy of 98% per cent while detecting anomalies. This can be ranked among the best

models. Unfortunately, more than 80% of the reviewed papers have not published their

implementation code for further investigation or even improvement.

62

4.2.2 Experimental Investigation of the Reviewed Models

The researcher found out that, many of the published papers in this area, failed to share a

complete implementation code. This factor is among the greatest challenges faced by

other researchers who want to build enhancements on the existing models. Less than 20%

of the papers had published their implementation code and some publishing only some

part of the implementation code.

Three models had shared their complete code on GitHub, the Sultani et al Multiple

Instance model [22], Chong and Tay Autoencoder [50] and Prediction based Anomaly

Detector that uses Generative Adversarial Network(GAN) [51].

These models were implemented and further investigated to unruffle their internal

working and learn ways of combing algorithms as well as the training, testing and

evaluation techniques. Each model was investigated, and its model architecture was

studied.

4.2.2.1 Transfer Learning: Sultani Multiple Instance Model

Sultani Multiple Instance Learning model [22], can be considered a breakthrough in this

area due to its contributions. This model was among the pioneer works on anomaly

detection that used transfer learning by utilizing a C3D feature extractor to extract features

from the videos and multiple ranking algorithms that used Convnet and SVM. This paper

63

introduced the UCF Crime dataset, which has been widely accepted and used for research

purposes within this domain.

During the development of the Sultani Multiple Instance Learning model [22], researchers

introduced the UCF Crime dataset. The UCF Crime dataset is composed of real-world

anomalies. The UCF Crime dataset is 1900 hours long video dataset that was introduced

by Sultani et al. [22] and is composed of real-life anomalies like Arrest, Arson, Abuse and

many others [22]. The training set has both abnormal and normal videos as well as the

testing set. Although usage of both classes is dependent upon the nature of the model to

be trained. This dataset has been re-used widely by other academicians and is immensely

popular. For example, [64], [58], [47] and [81] have used it.

The Sultani et al. model [22] did not use the videos in their raw form, instead, the

researchers used a C3D feature extractor to extract motion and appearance features.

Figure 4.1 is an illustration of the C3D feature extractor. C3D is made up of deep 3-

dimensional convolutional networks [17]. Its architecture contains 3x3x3 convolutional

kernels, followed by 2x2x2 convolutional kernels. In total, the model contains 8

convolutional, 5 pooling layers and 2 fully connected layers. C3D feature extractor is

important since it can extract motion and temporal features.

Figure 4.1: C3D Feature Extractor internal architecture adapted from [17]

64

C3D feature extractor was borrowed from Caffe and Facebook research [17]. It was

released with an open-source license. During the model investigation, the command

illustrated in figure 4.2 was used to extract features from the videos and it outputs a vector

of shape 4096.

C3D feature extractor is compiled and run through a command illustrated in Figure 4.2.

A video is passed to the command and the model extracts the features and it returns a

vector of size 4096 as the output.

The extracted features were vector files with 4096 dimensions. The outputs are text files

for each video. These features are fed into the fully connected neural network that is used

to get a ranking value for the normal and abnormal videos. Figure 4.3 shows the structure

of the model that Sultani et al used [22].

Figure 4.3: Fully Connected Sultani Ranking model

Figure 4.3 shows the structure of the Sultani ranking model that accepts the extracted

features in vectors of size 4096 and then outputs anomaly status in the output layer. The

Figure 4.2: Illustration of C3D feature extraction command

65

sigmoid activation function is used to extrapolate the anomaly ranking score. Figure 4.3

shows the structure of the fully convolutional model used by Sultani to detect anomalies

by using the output value of the model to rank anomalies in videos [22] The model was

trained using both normal and abnormal features. The model was trained in batches.

Figure 4.4 illustrates the training of the Sultani et al model and the saving of the training

weights.

Testing was done on the published weights and the saved model. To get exactly the

accuracy published in the Sultani et al of 75.41% [22]. Figure 4.5 displays an illustration

of the output of the testing process of the model. It shows the output of the model by

Figure 4.4: Illustration of Sultani Model training on batch process [22]

66

printing the summary of the model and the time taken to run a successful training cycle.

The accuracy scores were recorded and tabulated.

Figure 4.5: Output of the Sultani Model Testing [22]

4.2.2.2 Future Frame Prediction based Anomaly Detector

Generative Adversarial Networks (GAN) have shown immense potential in generating

videos and images. The GANs contain the discriminative and the generator network part,

which is trained to generate video frames [51]. Future video frames are predicted based

on the video frames and then compared with the ground truth frames to identify

anomalies. This model used the CUHK Avenue dataset, UCSD Pedestrian Dataset and

ShangaiTech Campus Dataset. This model is also a case of transfer learning since it uses

Flownet to estimate the optical flow in the videos. Complete code of this model was

shared on Github. The code was obtained, and the experiment was redone, and the

accuracy published matches the experiment that was conducted.

67

Figure 4.6 shows the structure of the Generative Adversarial Network used by Liu [51],

the image portrays the discriminator and the generative part of the model. The flow net

part is used to calculate motion features within the frames, and it is used to point out

abnormalities in the motion feature.

Figure 4.6: Illustration of the GAN [51] generator, discriminator

The model was tested using the weights from the paper and the accuracy tallies with the

publication. Figures 4.7, 4.8, and 4.9 below, show images of some tests that were run and

their accuracy output.

Figure 4.7 shows the individual test cases being run during the model testing process using

both the UCSD Ped1 and Ped2 datasets. The figures the looping of the test cases and their

summation.

68

Figure 4.7: Testing of the GAN prediction model

Figure 4.8 below, shows the output after all the test cases were run. This figure portrays

the output of the ped2 dataset. It goes further to illustrate how the area under the curve

(AUC) score was computed. Finally, a score of 0.9539 was obtained.

Figure 4.8: Output of the Liu- GAN [51] model testing using the Ped2 dataset

Figure 4.9 below illustrates the output obtained after all the ped1 dataset videos were run

through the Liu-GAN model [51]. The output describes the time take in seconds and the

frame per second property of the video. The output gives accuracy score of 0.8315.

69

Figure 4.9: Output of the Liu-GAN Model [51] testing using Ped1 Dataset

4.2.2.3 Spatial-temporal Autoencoder

Chong and Tay published their complete implementation code, this made it possible to

investigate the model since their complete code is accessible as well as the datasets [50].

This model used frames to train and test the model. So, the first step was to extract frames

in the videos and create a frames dataset. This model used the reconstruction error to

identify anomalies since the normal frames have low reconstruction error compared to the

abnormal frames.

Figure 4.10 is an illustration of the code section that calculates the reconstruction error

from the original frames and the reconstructed frames. The code calculates the Euclidean

distance between the original sequences and the reconstructed sequences per every frame

i.

Figure 4.10: Illustration of the regularity score computation function

The highlighted section within the Figure 4.10 illustrates the calculation of the regularity

score by scaling of the scores between 0 and 1. This scaled the reconstruction error to

70

values between 0 and 1 and finally the value is subtracted from 1 to get the regularity

score that indicates presence of anomaly.

The model is constituted of spatial and temporal parts, with the spatial containing

convolutional layers wrapped in time-distributed layers while the temporal part is made

up of Convolutional LSTM layers that can preserve the learned weights across the

temporal sequence. Below is the illustration of the spatial-temporal autoencoder by [50].

Figure 4.11: Chong and Tay Autoencoder Illustration

Figure 4.10 illustrates the computation of the regularity score from the Euclidean distance

while Figure 4.11 demonstrates the spatial and the temporal components of the model. It

can be noted the use of convolutional and convolutional LSTM as the underlying deep

learning algorithms.

The model accepts a sequence of 10 images of size 256 by 256, which it encodes to the

latent space and then decoded back to an output of 10 images of size 256 by 256.

Spatial Encoding Part

Temporal Part

Spatial

Decoding

71

The input and the output size of the autoencoders are usually the same. Therefore, frame

width, height, and the number of frames in a sequence are the same for the input and the

output.

Figure 4.12 shows a plot of the regularity score per every frame in the short video. After

the regularity score was calculated in figure 4.10, the regularity score sr(t) is plotted for

every frame in the video to show the anomalies within the video. Anomalies are identified

when the regularity score is low.

Figure 4.12: Chong and Tay Autoencoder Regularity Score [50]

The model returns a regularity score that is used to identify anomalies at the frame level.

The highest picks on the graph indicate, high regularity score and hence that region has

normal frames. Low points on the graph indicate the presence of anomalies since

anomalies are irregular patterns.

72

4.2.3 Results of Experimental Investigation

The first objective was to find the popular deep learning models and then select one model

to be improved. More than 30 models were reviewed and less than 20% of the models

were selected for experimental investigation since they had shared complete

implementation code. The biased selection was based on the accessibility of the complete

code. Three models were hand-picked due to their availability.

The models and the datasets used in them were studied further and run to identify

parameters used in their training and testing. It is important to note that the 3 models

selected as seen above are completely different in terms of their internal organization,

constitution, and their design. Two of the models can be considered as transfer learning

since they build upon knowledge from other previous models i.e., C3D and Flow net. This

is advantageous since it improves the performance of the new models constructed but also

troublesome since the pre-trained models can transfer errors to the hybrid model.

Table 4.2 is a tabulation of the model accuracies, according to the different datasets used

in the empirical investigations.

73

Table 4.2: Comparison of Frame Level AUC

 Frame Level AUC comparison

No. Method Accuracy per Dataset

UCSD

Ped1

UCSD Ped2 Avenue UCF Crime Average

1. Multiple Instance

Learning, Sultani et al.

[22]

n/a n/a n/a 75.41% 75.41%

2. STAE

Autoencoder, Chong

and Tay [50]

86.14% 90.23% 81.23% 78.23% 83.96%

3. Generative Adversarial

Network Future Frame

Prediction, Liu et al.

[51]

83.15% 95.31% 84.89% n/a 87.78%

Table 4.2 above shows the comparison of the ROC curve AUC of three models with

distinct learning techniques. All the models have shown high accuracy in anomaly

prediction. The first model when compared with the second model does better in terms of

accuracy. The GAN Future Frame prediction model [51] outperforms the Spatial-

Temporal Autoencoder [50] in some instances.

The Multiple Instance Learning-Sultani Model [22] and the Future Frame Prediction Liu

[51] models are complex due to their transfer learning nature where they borrow from

other pre-trained models. They are susceptible to transfer of error and hence they are not

considered for improvement due to their internal working complexity. On the other hand,

Chong, and Tay's [50] autoencoder is simple in its design since it is not a hybrid solution.

The Chong and Tay autoencoder can be improved with ease, hence it was selected for

enhancement [50]. The Chong and Tay model pays attention to the spatial and temporal

74

nature of the videos since it has spatial and temporal descriptors dedicated to extracting

those features. Hence it was selected.

4.2.4 Selected Model

It was established from the previous objective that, the Chong and Tay Spatial-Temporal

Autoencoder [50] was the chosen model to be improved. The improvement was aimed at

the reduction of anomaly detection errors. Therefore, it is important to understand the

architecture of the model before the improvement process. The design of autoencoders is

composed of the encoder, latent space, and the decoder part.

The Chong and Tay Spatial-Temporal Autoencoder [50] model will be referred to as the

selected model herein and the improved model will be referred to as the enhanced model.

The selected model is composed of spatial and temporal parts in its encoding and decoding

parts. To better understand the architecture of the model, a graphical illustration of the

model and a model summary printed from the code is shown below.

The autoencoder learns the (normal) regular patterns from the training videos. The model

has two parts namely spatial and temporal autoencoder. The spatial part extracts the

location-based data. The spatial part encodes the location of objects within an image. The

spatial encoder and decoder have two convolutional and deconvolutional layers

correspondingly.

75

Figure 4.13: Illustration of the Spatial-Temporal Model Architecture [50]

Figure 4.13 shows the design parts of the Spatial-Temporal Model before improvement.

The temporal part of the autoencoder is composed of 3 layers of convolutional long short-

term memory ConvLSTM. The convolutional part is good at object recognition while the

LSTM part performs well at sequence learning and time modelling.

LayerNormalization is used between the layers to normalize the weights. This layer

performs similar operations during the training and testing of the model. The

LayerNormalization layer is used to stabilize the hidden state of the recurrent networks

like ConvLSTM. Changes caused by the output of one-layer causes highly correlated

changes summed in the inputs to the next layer. These changes cause the covariate shift

10x256x256

10x128x64x64

10x64x32x32

10x32x32x32

10x32x32x32

10x128x64x64

10x1x256x256

10x256x256

76

problem which can be minimized by estimation of mean µ and the variance σ of the

summation of inputs in each layer [40].

LayerNormalization statistics is applied to all hidden units in the same and it ensures that

all hidden layers have the same normalization terms of µ and the σ. The mean of the layer

is denoted by µ, and the standard deviation of the layer is denoted by σ. Which are

calculated as follows [40]:

H denotes the number of hidden units in each

layer.

Therefore, the mean (µ) and the standard deviation (σ) of the layer are used to normalize

the weights of the layer in a process called layer normalization.

The model is trained using normal videos. The convolutional networks learn the weights

of the filters during the training process, and they learn how to reconstruct the normal

videos. Parameters like the number of layers, filters and filter size are set. These

parameters can be tuned to increase the accuracy of the model. Therefore, model

improvement involved tweaking the model parameters. For instance, a larger number of

filters, extract more features from images and yield a better network that recognizes

patterns in unseen images.

The reconstruction error difference when reconstructing abnormal clips is used to

calculate the regularity score that is used to estimate the abnormality score of every frame.

It is paramount to understand the calculation of the reconstruction error of all pixel values

77

I in frame t, which is taken as the Euclidean distance between the input frame and the

reconstructed frame.

Figure 4.14: Euclidean distance applied to calculate reconstruction error

Figure 4.14 portrays the reconstruction error calculated as the Euclidean distance. Where

fw is the learned weights of the model, x(t) is the input frame and the fw(x(t)) defines the

reconstructed video frame. Their difference is referred to as the Euclidean distance

denoted by e(t).

Abnormality score Sa(t) was calculated by scaling the Euclidean distance from 0 and 1.

Scaling of the Euclidean distance to obtain the abnormality score involved taking the e(t)

Euclidean distance per pixel and subtracting the ratio of the least e(t)min divided by the

largest Euclidean distance denoted as e(t)max in figure 17.

Afterwards, the regularity score Sr(t) was derived by subtracting the abnormal score Sa(t)

from 1.

Figure 4.15: Regularity score and Abnormality score calculation

78

The selected model code is attached to Appendix IV, the code can be noted that it has 15

layers and a total of 1,958,209 trainable parameters. This was the structure of the model

before enhancement.

4.3 Data Preprocessing

The Chong and Tay [50] autoencoder model were selected for improvement. This model

uses frames of size 256x256 for training. Therefore, the first step of data preparation is

the extraction of frames from the videos and splitting of normal videos as the training set

and abnormal videos as the testing set. Opencv library is utilized to extract the frames

from the videos.

Figure 4.16: Frame extraction code for video data preparation

79

Figure 4.16 shows the process of frame extraction and saving of frames within a structured

directory to preserve the frames of a video in one directory. The full code for the whole

extraction process is attached to Appendix II.

Figure 4.17: Frames Extraction process

Figure 4.17 portrays the frame extraction process from the videos. It shows the output of

several videos in the UCF Crime dataset. Other ways to improve the data for effective

model training and accuracy improvement included data augmentation. This process

increases the amount of data by applying transformations like reflection, rotation and

zooming in to expose the model to all angles of the image. It makes the dataset richer and

more realistic.

Data augmentation is the process of increasing the size and variety of data [38]. Existing

data is transformed through some modifications. Data augmentation is useful when there

is a shortage of data and variety. This process has been found to reduce overfitting. In the

study, the geometrical transformation was used to perform data augmentation. The

80

geometrical transformation includes random flip, cropping, rotation, and transformation.

The Keras ImageDatagenerator class was used for the augmentation tasks.

The sliding window technique was applied to increase the size of the training dataset.

Frames were concatenated through strides to acquire a rich dataset. For instance, a stride

could concatenate the even frames while the other one concatenated the odd frames. The

sliding window technique has been illustrated in Appendix II.

4.4 Model Enhancement

The model improvement process was conducted as a 3-tier process by applying 3 different

treatments to increase model accuracy, reduce overfitting, and reduction of human

supervision. The improvements that were done include, the introduction of Max-pooling,

the addition of model depth and the addition of a classifier layer.

4.4.1 Max-Pooling Treatment

The pooling operation is the process of sliding a filter(kernel) across each channel of the

feature map to summarize the features lying within the area covered by the filter. Pooling

can be considered as part of the convolutional layer building block. The max-pooling

reduces the size of the spatial representation since it reduces the number of parameters

and computations in the network.

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

6 8

3 4

x

y

Maxpool with 2x2

filters and 2 strides

Single depth slice

81

Figure 4.18: High-level illustration of Max-pooling operation

Figure 4.18 illustrates how a max-pooling operation works by taking the maximum value

in its filter. The max-pooling operation generates a single value from each filter. The value

can be denoted as Zf = max {S} = max {s1, s2, s3…….sn}. The pooling operation aggregates

together the output of each, and it compacts the output of a layer to a vector. Max-pooling

has been found to increase the overall performance of the model by up to 2% [83].

The MaxPooling2D was used due to the nature of the Convolutional Network used in the

Spatial encoding and decoding, which was Conv2D. Since the spatial parts were wrapped

in TimeDistributed functions to preserve the movements of objects, pooling functions

were also wrapped within the TimeDistributed functions. The encoding part of the

autoencoder was fitted with the MaxPooling2D while the decoder part was fitted with the

UpSampling2D which reverses the max-pooling effect for the spatial reconstruction.

The Spatial Encoder before max-pooling treatment had only the convolutional layer and

layer normalization.

Figure 4.19: Spatial encoder, before the introduction of max pooling

Figure 4.19 shows the encoding part of the model. It shows that the partial encoding which

is consisted of the convolution 2d layers. This part provides the extraction of the

82

appearance and texture features. Features extraction was guided by the spatial encoders

that extracted spatial features from the video frames. The encoding part draws the 256 by

256 features from every image, then it scales it down to 32 by 32 features. In some way

this was dimension reduction.

The encoder part after the addition of a max-pooling layer

Figure 4.20 shows the outcome of the encoding part after the max-pooling function was

introduced. Note the addition of the Maxpooling2D function wrapped within

TimeDistributed function. The pool size varies according to the scaling of the convolution

sizes.

UpSampling2D is the deconvolutional layer pooling function that reverses the Max-

pooling operation in the spatial decoder. The work of the decoder part of the autoencoder

is to reverse the operations of the encoder part. Therefore, Up Sampling increases the

output dimensions, unlike the max-pooling that reduces it. They extend the range of the

next kernel by adding the size of the vector.

Figure 4.21 shows the Spatial Decoder before the introduction of the un-pooling operation

Figure 4.20: New encoder after addition of max-pooling2d

83

Figure 4.21: Spatial Decoder before unpooling was introduced

UpSampling2D functions were added by researcher as part of the improvement, these

operations were wrapped in the TimeDistributed function to preserve the motion features.

See figure 4.22 below.

Figure 4.22: Spatial Decoder after the introduction of UpSampling2D

Figure 4.22 depicts the new spatial decoder with Upsampling2D functions that reverse

the effect of Maxpooling functions introduced in the encoding part. The size of the

Upsampling matrix is dependent on the size of deconvolution layer. The introduction of

the pooling operation to the model reduced overfitting and reduced the computation

complexity which was expected to cut some of the anomaly prediction errors. It was

observed that training time was cut slightly, and the model accuracy had some slight

increment in accuracy.

84

4.4.2 Model Depth Tuning

The idea behind deep learning is that a deeper network performs better. Therefore, state

of art models has shown a design trend of stacking layers of the network to enhance model

performance. Increasing the depth of the model was considered as part of the model

enhancement process. New layers were introduced in the model to increase learnable

features. Additional new layers were built upon the previous improvement that added

max-pooling operations.

Figure 4.23 shows the addition of the new layers on the model encoding part. It portrays

the 98th filter layer added between the 128 and 64 filter layers.

Figure 4.23: Addition of the new layer with 98 filter size

This adds a new convolution layer that extracts the spatial features. It can be seen in figure

26 that the new layers increased the depth of the model. The features extracted include

appearance, motion, and trajectory features.

Figure 4.24 shows the new features added to the temporal section of the model. The use

of 3 by 3 kernel sizes can be noted since they work better than the kernels with large

kernels.

85

Several layers were added to the temporal section of the autoencoder to have more depth.

From three layers to five layers the 48-filter size was introduced to ensure more detailing.

Figure 4.24: Addition of temporal encoder-decoder depth

An additional layer was introduced in the spatial decoder part of the model as well to have

more depth mirroring the exact structure of the spatial encoder. The decoder part is made

of deconvolutional layers that are used for reconstruction. Therefore, a filter of size 98

was introduced to enhance feature reconstruction. Figure 4.25 shows the new decoder

after the 98filter layer was introduced. The deconvolutional layer reverses the operation

of the convolutional layer hence it is introduced in both parts.

Figure 4.25: Addition of Spatial Decoder depth

86

The model depth increased the trainable parameters from 1,958,209 to 3,710,157. The

increase of trainable parameters increased the ability of the model to learn more features

from the data and identify objects.

The training data was composed of 10 sequences derived from the frames of the normal

videos. The frames were of the same size of 256x256, and they were fit to the model for

the training process. The summary of the whole enhanced model after it was executed

during the training process is illustrated in figure 4.26.

Figure 4.26: Enhanced model summary

87

Figure 4.26 illustrates the structure of the improved model. The depth increment and

introduction of regularization functions can be visible from the model summary.

4.4.3 Enhanced Autoencoder Model Training

The autoencoder models are trained by fitting the model with the same values of X and Y

since the goal is to teach the model how to reconstruct the given input. Therefore, our

training dataset of videos was used for training without any labels. A little processing

was done to ensure that the frames had the same size of 256x256, and the values of the

channels were scaled down to values between 0 and 1. The frames were concatenated in

the sliding window technique to acquire sequences of frames cut into bunches of 10. The

model takes bunches of 10 frames and then the other frames are fitted progressively in all

training epochs. Figure 4.27 shows the data scaling by scaling the images to values

between 0 and 1. Scaling of inputs avoids exploding gradient problems. Hence it was

applied.

Figure 4.27: Training Dataset Preparation

88

Figure 4.27 takes in the .jpg image then it divides every pixel value with 256 to scale it

down to a value range between 0 and 1. The function then returns an array of values that

represent the image.

The training data was fit to the autoencoder, to set its internal weights for the sequence

reconstruction task as follows. Figure 4.28 shows the training of the enhanced model.

Figure 4.28: Enhanced autoencoder training process

Figure 4.28 portrays the model training process. The process involved 3 epochs to

conserve the available RAM memory while each epoch contained 180 steps. The training

process took around 4 to 6 hours when deployed on a CPU environment depending on the

size of the dataset.

The training of the model extracted features from the video frames. The features extracted

included appearance, motion and trajectory features that define characters within the

video. Extracted features were used by the model calculate the reconstruction errors

dataset that is used to detect the anomalies within every frame.

89

4.4.4 Extraction of features and dimensionality reduction

Video frames were processed within the autoencoder by extraction of features that

described shapes, edges, and motion. Key features were drawn from the frames to form a

vector representation of the video, referred as the latent space. Extraction of the features

was guided by the spatial and temporal encoding parts of the model. An input image of

size 256 x 256 are fed to the model. The first conv2d layer extracted 65,536 features per

every pixel in that frame.

The encoding part reduced the size of the video frames by scaling it down through

convolutions of sizes 128, 98, 64 and 32. This process can be considered as reduction of

dimensions. Consider a single frame that was reduced from 65,536 features to 1,024

features that translated from size 256x256 to size 32 by 32. The reduced features were

combined to a latent space that was used by the autoencoder to reconstruct videos.

The logic of anomaly detection drew from the reconstruction error. The autoencoder was

trained on normal videos. The trained model was tested with a video containing

anomalies. Larger reconstruction error was realized in every frame that contained an

anomaly. Reconstruction error within the frames guided the detection of anomalies per

every frame.

4.4.5 Introduction of One-class Support Vector Machine

The existing model did not have a way of calculating the regularity threshold that

determines whether a frame has an anomaly or not. To automatically identify the

threshold, I introduced an unsupervised clustering tool. One class SVM trained on the

90

reconstruction error of the normal videos, allows the One-class Support Vector Machine

to establish a threshold by identifying the reconstruction error that lies outside the normal

class, hence identifying anomalies. One Class Classification entails training the model on

the normal data and forecasting whether new data is normal or abnormal.

One class classification technique is used for classification, where the normal is taken as

the negative instance (class 0) while the abnormal/anomalies are taken as the positive

instance (Class 1). This implies:

Negative Instance: Normal assigned 0

Positive Instance: Anomaly/Outlier assigned 1

One Class SVM captures the density of the majority class, Normal Video Frames are the

majority since the anomalies are rare. Anomalies are classified as outliers or extremes of

the density function.

Reconstruction errors were used to train the classifier, it was established that the One-

class SVM had to be trained on the normal video data only. Therefore, the normal videos

were run through the enhanced autoencoder, and the reconstructed sequences were used

to acquire the reconstruction error from the Euclidean distance. The reconstruction error

of normal videos was used to train the one-class SVM model. For testing purposes, videos

with anomalies were run through the enhanced autoencoder and the resultant data was

used as a testing set.

91

4.4.5.1 One class SVM Training dataset

The training dataset was derived from the reconstruction errors of the normal videos run

through the autoencoders. The reconstruction error of each frame was accumulated in an

array together with other videos to cover the normal videos within the dataset.

Figure 4.29: One class SVM Training Data creation

Figure 4.29 shows, the extraction of the regularity score datasets that were used to train

the One-class SVM. Reconstruction cost/error was acquired by calculating the Euclidian

distance between the original sequences and the reconstructed sequences of the normal

videos. The function within Figure 4.29 returns the reconstruction cost data in

all_recon_cost variable.

92

4.4.5.2 One class SVM Training

After the test data was acquired, the next step was to train the One-class SVM classifier

with the normal instance’s reconstruction cost.

Figure 4.30: One-Class SVM training process

Figure 4.30 depicts the training of the classifier. The classifier is trained using the fit ()

function that uses the reconstruction costs to train the OneClassSVM.

4.4.5.3 One-Class SVM Test Dataset

Abnormal videos were fed to the autoencoder through the model.predict() function to

acquire the reconstructed sequences that were used to calculate the reconstruction error.

This reconstruction error was used to test the One-Class SVM.

The test dataset was used to test the ability of the One-Class SVM to detect anomalies at

every frame by returning the class value, where there was an anomaly, it was expected to

return 1, otherwise it returns 0. Figure 4.31 shows the testing and validation of the

improved model.

93

Figure 4.31: Test Dataset Generation

It points out how the regularity scores can be applied to pinpoint anomalies. Anomaly

detection relied on the reconstruction error obtained from the calculation of the Euclidean

distance between the pixels of the original frame and reconstructed frame. It had been

noted by Chong and Tay [19], that the frames with anomalies have higher reconstruction

error. The autoencoder model returned the reconstruction error that indicates anomalies.

One class SVM expanded that logic by classifying the reconstruction score as either

normal or abnormal.

94

4.5 Experiments

This chapter expounds on the experiments that I conducted, how they were set up and the

datasets used in the different test cases. A posttest control experimental setup

methodology was followed. The accuracy was measured after the enhancement was done

to a random selected videos within the datasets. The experiments were set up in Google

cloud. Where the experiments involved model training, testing, and the validation of the

enhanced model.

4.5.1 Datasets

The new enhanced model was trained on three of the most used anomaly detection video

datasets: Avenue, UCSD Ped1 and Ped2. The training videos were composed of normal

events only while the testing videos were composed of both normal and abnormal

activities. The University of California San Diego (UCSD) Ped1 and Ped2 datasets were

used for training and testing. UCSD Ped1 & Ped2 are composed of 70 videos with 34 as

the training set and 36 as the testing set. The video's scenery is a group of people walking

in a park. Anomalies included non-pedestrian entities like bikers, skaters, carts,

wheelchairs, and people walking in the grass area [35].

The Avenue dataset contains 16 training and 21 testing video clips. A total of 30652

frames are available in the dataset. These videos are captured on a campus street using a

still camera. Strange actions like the running of persons and riding a bike in the walkway

are the abnormal events presented. The dataset compilation and download code have been

attached in Appendix I.

95

4.5.2 Model Parameters

The aim of training the model was to reduce the reconstruction cost of the input data. The

Adam optimizer was utilized to set the learning rate automatically according to the model

weights update history. Mini batches of size 4 and 3 epochs were used for training the

model until the reconstruction loss stopped decreasing. Rectified Linear Unit (ReLU)

activation function was used due to its ability to work well with CNNs and work with

floating-point values.

4.6 Model Validation

This section highlights the methods used to ensure that the model achieved the intended

purpose. Evaluation methods were deployed to check the performance of the hybrid

model. The internal working and the ability to predict the anomalies are measured by

established evaluation metrics like the ROC curve and F1 score. Public validated datasets

were used for validation of the enhanced model.

4.6.1 Results of the Experiments

The enhancement of the Autoencoder included the addition of max-pooling and an

increase of the model depth which increased the trainable features from 1.95 million to

around 3.8 million learnable parameters. To effectively monitor the effectiveness of this

treatment, various experiments were run using different datasets and model accuracy was

recorded.

96

The autoencoder was used to reconstruct the videos, which were then used to calculate

the reconstruction cost/error. The reconstruction cost is scaled between 0 and 1. To get a

regularity score which is used to indicate anomalies. Where a low regularity score is

considered an anomaly scene and high regularity score is considered normal.

The regularity score, and reconstruction cost graphs were plotted for every experiment

run and the corresponding error rate and regularity score can be identified from the plots.

The dataset's ground truths were used to calculate the accuracy of the model.

The regularity score indicates the anomaly score of every frame of the video, with a low

regularity score indicating frame irregularity, hence indicating anomaly.

Below are sample outputs of the model before and after improvement: -

Test Case 001

Figure 4.32: A plot of the Case 001 video ground truth

The ground truth is the actual values of anomalies and normal scenes per every frame, it

indicates every anomaly present in the test video.

97

Before enhancement

After enhancement

Figure 4.34: Output after enhancement

It can be noted that the graphs have some slight differences when compared with the

before and after the model was improved. The improved model graphs have more smooth

lines compared with the old model. This difference indicates the ability of the new

improved model to deal with local minima and establish a clearer distinction between

normal and abnormal scenes in the videos. Both Figures 4.33 and 4.34 show the

comparison of the regularity score and mean squared error, before and after the model

enhancement.

Figure 4.33: Before model improvement

98

Test Case 002

Figure 4.35: A plot of ground truth in test case 002

Figure 4.35 shows a plot of the actual anomalies and normal scenes in the test video. This

plot is the true values of anomalies per every frame. The ground truths are verified and

published in the dataset. Ground truth is used to measure the accuracy of the model.

Before enhancement

 Figure 4.36 shows the

plots of the reconstruction error, regularity score and the RoC Curve. This plot shows that

the model performs poorly in this test case. Note the accuracy score. This scene is a bit

complicated hence the model performs poorly. The reconstruction error plot on an ideal

situation should be close to the ground truth plot in Figure 4.35

Figure 4.36: Test Case 02: Before enhancement

99

After enhancement

Figure 4.37 shows the outputs obtained in Test case 002 after the model was improved.

Note the increase in the model accuracy and the smoothness of the curve. The model

performs better after it was enhanced. It can predict well despite the scene complexity.

Test Case 003

A plot of ground truths

Before enhancement

Figure 4.37: Test Case 002: After enhancement output

Figure 4.38: Test Case 003 Ground Truth Plot

Figure 4.39: Test Case 003: before enhancement

100

Figure 4.39 shows the reconstruction error, regularity score and the ROC curve. The plot

of the reconstruction error shows close resemblance to the ground truth although at the

top region with anomalies it has some ramps indicating local minima. After the model

was improved as shown in figure 4.40, the plots of reconstruction error and the regularity

score smoothens with local minima being flattened. This shows the stability of the model

in the prediction of anomalies.

Test Case 003 After enhancement

The low regularity score indicates the presence of anomalies as illustrated below in the

Figure 4.41.

Figure 4.40: Test Case 003 after the enhancement

101

Figure 4.41 illustrates the presence of anomalies in the test video. For instance, the

anomaly plot shows that from the 50th to 150th frames there are anomalies present. A part

of the frames in between is shown in figure 43. The present anomalies are the presence of

non-pedestrian entities in the park. Anomalies have low regularity scores hence the

depression in the regularity plot. From figure 4.41, it was established that model

improvement addresses local minima by flattening them such that anomalies can be

identified with ease.

Figure 4.41: Illustration of Anomalies in the test case 003 video

102

4.6.2 Comparison of Models Accuracy

Different datasets were used to assess the model and the test cases were run in every

dataset and the RoC curve accuracy scores were averaged to have a single accuracy score

that was compared to the old model. The accuracy scores were tabulated in the table below

for comparison. The model was trained and evaluated on UCSD Ped1 and Ped2 public

validated datasets.

Table 4.3: Comparison of the RoC-AUC Scores

Model

UCSD Ped1 UCSD Ped2 Average

Old Autoencoder

Model [50]

86.14 90.23 84.86

Enhanced

Autoencoder Model

92.63 95.56 94.10

Table 4.3 shows evidence of improvement in the average percentage accuracy of the test

cases per dataset. Notably, the accuracy has been increased by some percentage, due to

the improvements made to the model structure. From the average column, we can note

that the model accuracy increased by 9.2%. This increase reduces the errors in the

anomaly prediction. This contribution reduces false alarm errors and increases anomalies

detected during prediction of anomalies.

103

4.6.3 Test of statistical significance

It is important to evaluate whether the improvements made to the model caused the

increase in model accuracy. This test establishes whether the enhancements were

significant. The accuracy score is not normally distributed and hence a distribution-free

method was used. Sign test method was selected to test for the statistical significance of

the improvement. This method does not assume that data is normally distributed, but it

treats the data as binomial distribution. The test of significance was conducted at different

alpha levels and the following hypothesis was formulated.

Formulated hypothesis

Null Hypothesis

H0 - No significant accuracy improvement in the enhanced STAE model after depth and

pooling tuning.

Research Hypothesis

H1- There is significant accuracy improvement in the enhanced STAE model after depth

and pooling tuning.

The accuracy scores from different datasets were recorded before and after the model was

enhanced and were used to test the significance of the improvement using the sign test

method as follows:

104

Figure 4.42: Sample data used for test of significance

Figure 4.42 displays, the test cases conducted, that were used to test for the significance

of the enhancement. The test cases are the total number of tests conducted from the UCSD

Ped1 and Ped 2 test datasets after the test experiments were conducted. These test cases

were randomly sampled from the 36 available test subjects at 95% confidence level and

a margin error of 10%.

The test statistic for the sign test is the number of positive or negative signs. In this case,

we observe 16 positive and 2 negative signs. Zeros are not considered as they do not

indicate any significant improvement.

105

Test statistic for the Sign test is the least number of either positive or negative signs

[84]and it follows binomial distribution with the probability of P = 0.5 and n as the number

of subjects in the study.

Two-tailed test was used since improvement of the model had both negative and positive

effects to the model prediction accuracy [84]. Two-sided test hypothesizes a repetitive

behavior like the prediction accuracy before and after the model improvement.

P values were calculated from the binomial distribution formula below: -

𝑃(𝑥 𝑠𝑢𝑐𝑐𝑒𝑠𝑠) =
𝑛!

𝑥! (𝑛 − 𝑥)!
 𝑝𝑥(1 − 𝑝)𝑛−𝑥

Since the number of positive is not equal to the negative sign, we proceed to calculate the

p-value,

 A two-tailed test with a Significance level of 0.05 and,

 Sample size n=18[excluding 0], number of successes=2 since the positive outcomes are

16.

When calculating the p-value,

It was assumed that the data follows a binomial distribution, which has a probability of

0.5 such that; Null hypothesis is that there is an equal number of signs (+) and (-).

106

An assumption of the null hypothesis is made to set up a binomial experiment with 0.5 as

probability, 18 as the number of trials and 2 as the success since success is taken as the

least positive or negative sign.

At the significance level α=0.05

The P-value is 0.000583 and since it is less than the significance level of 0.05, the null

hypothesis was rejected.

At the significance level α=0.01

The calculated P-Value is 0.000583 and it is still less than the significance level of 0.01,

the null hypothesis was rejected.

Therefore, the conclusion was made that, there was evidence of improvement in model

accuracy after it was enhanced.

4.7 Summary

This chapter captured the implementation of the study objectives, the results obtained and

the interpretation of the results. Deep learning models were reviewed by conducting

analysis and a model was selected for improvement. The model was enhanced through

the increase of the model depth, regularization, and introduction of the clustering

algorithm. Depth of the spatial temporal autoencoder was added from 15 layers to 29

layers. The accuracy of the enhanced model was noted to increase significantly by

increase from average of 84.8% to 94.1%. The model accuracy was compared and

validated to establish the significance of the improvement.

107

CHAPTER FIVE

SUMMARY, CONCLUSION AND RECOMMENDATIONS

5.1 Summary

This chapter concludes the Thesis, by highlighting the research landmarks and the

delivered enhanced deep learning model by shedding light on important highlights. The

chapter entails how the model was improved, and the new improved model. The process

of model selection, model debugging, and model improvement contributes to autoencoder

development and intelligent surveillance.

The first part of the thesis analysis the deep learning models implemented for surveillance

videos anomaly detection. Several categories of the models are discovered in the review,

and current and emerging trends were also discovered. The implemented models were

grouped into several categories namely: transfer learning, autoencoders, ensemble

learning and continual learning.

The research study was driven by the need to improve and refine anomaly detection in

surveillance videos. This work was focused on the reduction of errors in anomaly

detection as identified in the research gap. It can be noted that the model was enhanced

by adding its depth, introducing of max-pooling function, and adding an automatic

classifier. The new enhanced model extracted more features from the videos after

enhancement. Extraction of more features made it possible for the model to reduce scene

complexity and make more accurate anomaly predictions. Hence, the overall increase in

the model accuracy. The enhanced model can be seen in appendix v.

108

The last step was to validate the improvement. The enhanced model was trained and tested

using the UCSD Ped1 and Ped2 datasets. Anomaly prediction accuracy of the old and the

new enhanced models were compared, and significant improvement was noted.

5.2 Conclusion

The enhanced model achieves a significant increase in anomaly prediction accuracy;

hence it minimizes the error rate. This study established that the depth of autoencoder

models while working in video anomaly detection matters. The spatial parts of the

autoencoder model were made deeper to extract appearance, texture, and position features

from the imagery data. The depth tuning included addition of regularization layers as well.

Application of regularization parameters, reduced the overfitting in the autoencoders,

hence fostering model generation capability.

The new enhanced model is deeper with a total of 29 layers compared with the old model

which had 15 layers. This model has more trainable parameters with a total of 3,710,157

parameters compared to the old model with 1,958,209 learnable parameters.

5.3 Recommendations

Some of notable recommendations noted within the research can help in shaping the

quality of research and the future of intelligence surveillance.

5.3.1 Recommendations to Policy

Other researchers with interest in this area and industries seeking to push further

intelligence surveillance should consider video reconstruction error while exploring the

109

unsupervised anomaly detection. In addition, progressive training should be built on the

autoencoder model to allow room for the new data. The problem of novel anomalies can

be a future consideration by incorporating continual learning.

Use of Graphics Processing Units (GPUs) as the default computing engine is

recommended. GPUs are more efficient while dealing with complex data like videos.

5.3.2 Recommendations for Future Works

In future, more work should be done on real-time anomaly detection and diversification

of anomaly detection in satellite surveillance, traffic surveillance and other areas can be

considered. Real-time anomaly detection and continually learning models will be a closer

step towards deployable intelligent surveillance.

110

REFERENCES

[1]
R. Yadav and M. Rai, “Advanced Intelligent Video Surveillance System (AIVSS):

A Future Aspect,” Research Gate, 2018.

[2]
X. Zheng, Y. Zhiguo, M. Lin and Z. Hui, “The Big Data Analysis of the Next

Generation Video Surveillance System for Public Security,” Research Gate, pp.

171-175, 2016.

[3]
M. Chowdhury, J. Gao and R. Islam, “Human Surveillance System for Security

Application,” in Institute for Computer Sciences, Social Informatics and

Telecommunications Engineering, Bathurst, Australia, 2015.

[4]
Surfshark, “Surveillance Cities,” Surfshark, November 2020. [Online]. Available:

https://surfshark.com/surveillance-cities. [Accessed 25 August 2021].

[5]
Tryolabs, “Guide to Video Analytics: Applications and Opportunities,” 2020.

[Online]. Available: https://tryolabs.com/resources/video-analytics-guide/.

[6]
C. Nicholson, “Artificial Intelligence (AI) vs. Machine Learning vs. Deep

Learning,” 2019. [Online]. Available: https://pathmind.com/wiki/ai-vs-machine-

learning-vs-deep-learning.

[7]
A. Sarkar, “Human Activity and Behavior Recognition in Videos. A Brief Review,”

2014. [Online]. Available: https://www.grin.com/document/276054.

111

[8]
A. Shrestha and A. Mahmood, “Review of Deep Learning Algorithms and

Architectures,” IEEE, pp. 53040-53065, 2019.

[9]
S. Dobilas, “LSTM Recurrent Neural Networks — How to Teach a Network to

Remember the Past,” Medium, 6 February 2021. [Online]. Available:

https://towardsdatascience.com/lstm-recurrent-neural-networks-how-to-teach-a-

network-to-remember-the-past-55e54c2ff22e. [Accessed 29 June 2022].

[10]
C. Nicholson, “A Beginner's Guide to LSTMs and Recurrent Neural Networks,”

2018. [Online]. Available: https://pathmind.com/wiki/lstm.

[11]
A. Borner, “What is Deep Learning and How Does it Work? | Content Simplicity,”

2019. [Online]. Available: https://contentsimplicity.com/what-is-deep-learning-

and-how-does-it-work/.

[12]
M. Hargrave, “Deep Learning,” 30 April 2019. [Online]. Available:

https://investopedia.com/terms/d/deep-learning.asp.

[13]
J. Brownlee, “What is Deep Learning?,” 16 August 2019. [Online]. Available:

https://machinelearningmastery.com/what-is-deep-learning/.

[14]
A. Xavier, “An introduction to ConvLSTM,” 25 March 2019. [Online]. Available:

https://medium.com/neuronio/an-introduction-to-convlstm-55c9025563a7.

112

[15]
S. Shimozaki, “Self-Supervised Video Anomaly Detection,” 7 5 2017. [Online].

Available: https://launchpad.ai/blog/video-anomaly-detection.

[16]
S. J. Shri and S. Jothilakshmi, “Anomaly Detection in Video Events using Deep

Learning,” International Journal of Innovative Technology and Exploring

Engineering (IJITEE), pp. 1313-1316, 2019.

[17]
B. M. Nair, “Deep Dive into Convolutional 3D features for action and activity

recognition (C3D),” Medium.com, 23 July 2018. [Online]. Available:

https://medium.com/@nair.binum/quick-overview-of-convolutional-3d-features-

for-action-and-activity-recognition-c3d-138f96d58d8f. [Accessed 22 August

2021].

[18]
H. Selat, “Anomaly Detection in Videos using LSTM Convolutional Autoencoder,”

15 October 2019. [Online]. Available: https://towardsdatascience.com/prototyping-

an-anomaly-detection-system-for-videos-step-by-step-using-lstm-convolutional-

4e06b7dcdd29.

[19]
J. R. Medel and A. Savakis, “Anomaly Detection in Video Using Predictive

Convolutional Long Short-Term Memory Networks,” Research Gate, 2016.

[20]
R. Chalapathy and S. Chwala, “Deep Learning For anomaly Detection: A Survey,”

arxvi, 2019.

113

[21]
K. V. Pawar and V. Attar, “Deep learning approaches for video-based anomalous

activity detection,” World Wide Web, p. 22, 27 May 2018.

[22]
S. Waqas, C. Chen and S. Mubarak, “Real-world Anomaly Detection in

Surveillance Videos,” Computer Vision Fiundation, pp. 6479-6488, 2016.

[23]
I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, Cambridge: MIT Press,

2016.

[24]
G. Xie and J. Lai, “An Interpretation of Forward-Propagation and Back-

Propagationof DNN,” Pattern Recognition andComputer Vision, 2018.

[25]
M. A. Nielsen, Neural Networks and Deep Learning, Determination Press, 2015.

[26]
K. O’Shea and R. Nash, “An Introduction to Convolutional Neural Networks,”

Research Gate, pp. 1-11, 2015.

[27]
K. Wiggers, “AI Guardsman uses computer vision to spot shoplifters,” 26 June

2018. [Online]. Available: https://venturebeat.com/2018/06/26/ai-guardsman-uses-

computer-vision-to-spot-shoplifters/.

[28]
G. H. Martınez, “OpenPose: Whole-Body Pose Estimation,” Carnegie Mellon

University, Pittsburgh, Pennsylvania , 2019.

114

[29]
M. Sabokrou, M. Fayyaz, M. Fathy, Z. Moayed and R. Klette, “Deep-Anomaly:

Fully Convolutional Neural Network for Fast Anomaly Detection in Crowded

Scenes,” Computer Vision and Image Understanding, pp. 1-25, 2018.

[30]
S. Bansal, “3D Convolutions: Understanding + Use Case,” 2019. [Online].

Available: kaggle.com/shivamb/3d-convolutions-understanding-use-case.

[31]
A. Kushwaha, A. Mishra, K. Kamble, R. Janbhare and A. Pokhare, “Theft Detection

using Machine Learning,” IOSR Journal of Engineering (IOSRJEN), pp. 67-71,

2018.

[32]
M. Sabokrou, M. Fayyaz, M. Klette and R. Fathy, “Deep-Cascade: Cascading 3D

Deep Neural Networks for Fast Anomaly Detection and Localizaton in Crowded

Scenes,” IEEE Transactions on Image Processing, pp. 1992-2004, 2017.

[33]
M. U. Farooq, N. A. Khan and M. S. Ali, “Unsupervised Video Surveillance for

Anomaly Detection of Street Traffic,” (IJACSA) International Journal of Advanced

Computer Science and Applications,, pp. 270-275, 2017.

[34]
J. Hui, “How to start a Deep Learning project?,” Medium, 1 Mar 2018. [Online].

Available: https://jonathan-hui.medium.com/how-to-start-a-deep-learning-project-

d9e1db90fa72. [Accessed 28 Sept 2021].

[35]
UCSD, “UCSD Anomaly Detection Dataset,” UCSD, 2014. [Online]. Available:

http://www.svcl.ucsd.edu/projects/anomaly/dataset.html. [Accessed 10 May 2021].

115

[36]
J. Hui, “Deep Learning designs (Part 3),” Medium, 03 March 2018. [Online].

Available: https://jonathan-hui.medium.com/deep-learning-designs-part-3-

e0b15ef09ccc. [Accessed 28 September 2021].

[37]
J. Hui, “Visualize Deep Network models and metrics (Part 4),” Medium, 1 March

2018. [Online]. Available: https://jonathan-hui.medium.com/visualize-deep-

network-models-and-metrics-part-4-9500fe06e3d0. [Accessed 28 Sept 2021].

[38]
J. Hui, “Debug a Deep Learning Network (Part 5),” Medium, 1 March 2018.

[Online]. Available: https://jonathan-hui.medium.com/debug-a-deep-learning-

network-part-5-1123c20f960d. [Accessed 28 Sept 2021].

[39]
S. Doshi, “Various Optimization Algorithms For Training Neural Network,”

Towards Data Science, 13 Jan 2019. [Online]. Available:

https://towardsdatascience.com/optimizers-for-training-neural-network-

59450d71caf6. [Accessed 28 Sept 2021].

[40]
J. L. Ba, J. R. Kiros and G. E. Hinton, “Layer Normalization,” arXiv preprint , vol.

arXiv:1607.06450, 2016.

[41]
J. Hui, “Improve Deep Learning Models performance & deep network tuning (Part

6),” Medium, 2 March 2018. [Online]. Available: https://jonathan-

hui.medium.com/improve-deep-learning-models-performance-network-tuning-

part-6-29bf90df6d2d. [Accessed 28 Sept 2021].

116

[42]
T. Gupta, “Deep Learning: Regularization Notes,” Towards Data Science, 20

August 2017. [Online]. Available: https://towardsdatascience.com/deep-learning-

regularization-notes-29df9cb90779. [Accessed 28 Sept 2021].

[43]
S. N. Ravi, T. Dinh, V. S. Lokhande and V. Singh, “Explicitly Imposing Constraints

in Deep Networks via Conditional Gradients Gives Improved Generalization and

Faster Convergence,” in The Thirty-Third AAAI Conference on Artificial

Intelligence (AAAI-19), Honolulu, 2019.

[44]
R. K. Malaiya, D. Kwon, J. Kim, S. C. Suh, H. Kim and I. Kim, “An Empirical

Evaluation of Deep Learning for Network Anomaly Detection,” ResearchGate,

2018.

[45]
K. Nighania, “Various Ways to Evaluate a Machine Learning Models

Performance,” 6 December 2018. [Online]. Available:

http://www.towardsdatascience.com/variou-waays-to-evaluate-a-machine-

learning-models-performance-230446055f15.

[46]
FormPlus, “Experimental Research Designs: Types, Examples & Methods,”

FormPlus, 23 September 2021. [Online]. Available:

https://www.formpl.us/blog/experimental-research. [Accessed 25 September

2021].

[47]
S. Aberkane and M. Elarbi, “Deep Reinforcement Learning for Real-world

Anomaly Detection in Surveillance Videos,” in 2019 6th International Conference

117

on Image and Signal Processing and their Applications (ISPA), Mostaganem,

Algeria, 2019.

[48]
L. P. Cinelli, “Anomaly Detection in Surveillance Videos using Deep Residual

Networks,” Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2017.

[49]
M. F. M. M. Sabokrou, “Video anomaly detection and localisation based on the

sparsity and reconstruction error of auto-encoder,” Electronic Letters, vol. 52, no.

13, pp. 1122-1124, 2016.

[50]
Y. S. Chong and Y. H. Tay, “Abnormal Event Detection in Videos Using

Spatiotemporal Autoencoder,” arxiv, vol. 1701, no. 01546v1, 2017.

[51]
W. Liu, W. Luo, D. Lian and S. Gao, “Future Frame Prediction for Anomaly

Detection – A New Baseline,” Computer Vision Foundation, vol. abs/1712.09867,

2017.

[52]
Business Research Methodology, “Purposive sampling,” Business Research

Methodology, 01 Jan 2021. [Online]. Available: https://research-

methodology.net/sampling-in-primary-data-collection/purposive-sampling/.

[Accessed 25 June 2022].

[53]
T. Srivastava, “11 Important Model Evaluation Metrics for Machine Learning

Everyone should know,” 6 August 2019. [Online]. Available:

118

https://www.analyticsvidhya.com/blog/2019/08/11-important-model-evaluation-

error-metrics/.

[54]
Y. S. Chong and Y. H. Tay, “Modeling Representation of Videos for Anomaly

Detection using Deep Learning: A Review,” Research Gate, 2015.

[55]
A. Ullah, K. Muhammad and S. W. Baik, “Action Recognition in Video Sequences

using Deep Bi-Directional LSTM With CNN Features,” IEEE Access, pp. 1155-

1166, 2017.

[56]
E. Duman and O. A. Erdem, “Anomaly Detection in Videos Using Optical Flow

and Convolutional Autoencoder,” IEEE Access, vol. 7, pp. 183914 - 183923, 2019.

[57]
K. Liu, M. Zhu, H. Fu, H. Ma and T.-S. Chua, “Enhancing Anomaly Detection in

Surveillance Videos with Transfer Learning from Action Recognition,”

Proceedings of the 28th ACM International Conference on Multimedia, pp. 4664-

4668, 2020.

[58]
Y. Zahid, M. A. Tahir and M. N. Durrani, “Ensemble Learning Using Bagging And

Inception-V3 For Anomaly Detection In Surveillance Videos,” in 2020 IEEE

International Conference on Image Processing (ICIP), Abu Dhabi, United Arab

Emirates, 2020.

119

[59]
K. Doshi and Y. Yilmaz, “Any-Shot Sequential Anomaly Detection in Surveillance

Videos,” Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR) Workshops, pp. 934-935, 2020.

[60]
K. Doshi and Y. Yilmaz, “Online anomaly detection in surveillance videos with

asymptotic bound on false alarm rate,” Pattern Recognition, vol. 114, p. 107865,

2021.

[61]
A. R. Pathak, M. Pandey and S. Rautaray, “Application of Deep Learning for object

detection,” International Conference on Computational Intelligence and Data

Science (ICCDS 2018), pp. 1706-1717, 2018.

[62]
T. S. Nazare, R. F. de Mello and M. A. Ponti, “Are pre-trained CNNs good feature

extractors for anomaly detection in surveillance videos?,” eprint arXiv, no.

1811.08495v1, 2018.

[63]
S. Bansod and A. Nandedkar, “Transfer learning for video anomaly detection,”

Journal of Intelligent & Fuzzy Systems, vol. 36, no. 3, pp. 1967-1975, 2019.

[64]
W. Ullah, A. Ullah, T. Hussain, Z. A. Khan and S. W. Baik, “An Efficient Anomaly

Recognition Framework Using an Attention Residual LSTM in Surveillance

Videos,” AI-Enabled Advanced Sensing for Human Action and Activity

Recognition, vol. 21, 2021.

120

[65]
L. P. Cinelli, L. A. Thomaz, A. F. d. Silva, E. A. B. d. Silva and S. L. Netto,

“Foreground Segmentation for Anomaly Detection in Surveillance Videos Using

Deep Residual Networks,” XXXV SIMPOSIO BRASILEIRO DE

TELECOMUNICAC¸ ´ OES E PROCESSAMENTO DE SINAIS, pp. 3-6, 2017.

[66]
T.-N. Nguyen and J. Meunier, “Anomaly Detection in Video Sequence with

Appearance-Motion Correspondence,” in Proceedings of the IEEE/CVF

International Conference on Computer Vision (ICCV), 2019.

[67]
A. Ramchandran and A. K. Sangaiah, “Unsupervised deep learning system for local

anomaly event detection in crowded scenes,” Multimedia Tools and Applications,

vol. 79, no. 47/48, p. 35275–35295, 2020.

[68]
Y. Zhao, B. Deng, C. Shen, Y. Liu, H. Lu and X.-S. Hua, “Spatio-Temporal

AutoEncoder for Video Anomaly Detection,” Proceedings of the 25th ACM

international conference on Multimedia, pp. 1933-1941, 2017.

[69]
Y. Zhao, B. Deng, C. Shen, Y. Liu, H. Lu and X.-S. Hua, “Spatio-Temporal

AutoEncoder for Video Anomaly Detection,” Proceedings of the 25th ACM

international conference on Multimedia, pp. 1933-1941, 2017.

[70]
H. Wu, J. Shao, X. Xu, F. Shen and H. Shen, “A System for Spatiotemporal

Anomaly Localization in Surveillance Videos,” Proceedings of the 25th ACM

international conference on Multimedia, pp. 1225-1226, 2017.

121

[71]
S. Bhakat and G. Ramakrishnan, “Anomaly Detection in Surveillance Videos,”

Proceedings of the ACM India Joint International Conference on Data Science and

Management of Data, p. 252–255, 2019.

[72]
M. Hasan, J. Choi, J. Neumann, A. K. Roy-Chowdhury and L. S. Davis, “Learning

Temporal Regularity in Video Sequences,” Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pp. 733-742, 2016.

[73]
T.-H. Vu, J. Boonaert, S. Ambellouis and A. Taleb-Ahmed, “Multi-Channel

Generative Framework and Supervised Learning for Anomaly Detection in

Surveillance Videos,” Human Activity Recognition Based on Image Sensors and

Deep Learning, vol. 21, no. 9, p. 3179, 2021.

[74]
R. Chalapathy, A. K. Menon and S. Chawla, “Robust, Deep and Inductive Anomaly

Detection,” Machine Learning and Knowledge Discovery in Databases, vol. 10534,

2017.

[75]
K. T. Nguyen, D. T. Dinh, M. N. Do and M. T. Tran, “Anomaly Detection in Traffic

Surveillance Videos with GAN-based Future Frame Prediction,” Proceedings of the

2020 International Conference on Multimedia, pp. 457-463, 2020.

[76]
K. Doshi and Y. Yilmaz, “Continual Learning for Anomaly Detection in

Surveillance Videos,” in 2020 IEEE/CVF Conference on Computer Vision and

Pattern Recognition Workshops, Seattle, WA, USA, 2020.

122

[77]
K. Kavikuil and J. Amudha, “Leveraging Deep Learning for Anomaly Detection in

Video Surveillance,” First International Conference on Artificial Intelligence and

Cognitive Computing, vol. 815, no. I, pp. 239-247, 2018.

[78]
W. Ullah, A. Ullah, I. U. Haq, K. Muhammad, M. Sajjad and S. W. Baik, “CNN

features with bi-directional LSTM for real-time anomaly detection in surveillance

networks,” Multimedia Tools and Applications , p. 16979–16995, 2021.

[79]
M.Murugesan and S.Thilagamani, “Efficient anomaly detection in surveillance

videos based on multi layer perception recurrent neural network,” in

Microprocessors and Microsystems, 2020.

[80]
V. A. Karishma Pawar, “Application of Deep Learning for Crowd Anomaly

Detection from Surveillance Videos,” in 2021 11th International Conference on

Cloud Computing, Data Science & Engineering (Confluence), Noida, India, 2021.

[81]
N. Nasaruddin, K. Muchtar, A. Afdhal and A. P. J. Dwiyantoro, “Deep anomaly

detection through visual attention in surveillance videos,” Journal of Big Data, vol.

7, no. 87, 2020.

[82]
A. Khaleghi and M. S. Moin, “Improved anomaly detection in surveillance videos

based on a deep learning method,” in 2018 8th Conference of AI & Robotics and

10th RoboCup Iranopen International Symposium (IRANOPEN), Qazvin, Iran,

2018.

123

[83]
I. S.-B. Víctor Suárez-Paniagua, “Evaluation of pooling operations in convolutional

architectures for drug-drug interaction extraction,” in BMC Bioinformatics 19, 209

(2018)., 2018.

[84]
W. W. LaMorte, “Nonparametric Tests,” Boston University , 4 May 2017. [Online].

Available: https://sphweb.bumc.bu.edu/otlt/mph-

modules/bs/bs704_nonparametric/BS704_Nonparametric5.html#:~:text=The%20t

est%20statistic%20for%20the%20Sign%20Test%20is%20the%20smaller,details

%20on%20the%20binomial%20distribution).. [Accessed 20 7 2022].

[85]
N. Rasheed, Khan, Shoab and A. Khalid, “Tracking and Abnormal Behavior

Detection in Video Surveillance Using Optical Flow and Neural Networks,” in

Research Gate, 2014.

[86]
A. Mordvinster and K. Abdi, “Background Subtraction,” 2013. [Online]. Available:

https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py-

video/py_bg_subtraction/py_bg_subtraction.hml.

[87]
A. Kappeler, R. D. Morris, A. R. Kamat, N. Rasiwasia and G. Aggarval,

“Combining Deep Learning and Unsupervised Clustering to Improve Scene

Recognition Performance,” NorthWestern University, Evanston Illnois, 2015.

[88]
C. Viroli and G. J. McLachlan, “Deep Gaussian Mixture Models,” 21 Nov 2017.

[Online]. Available: https://arxiv.org/pdf/1711.06929.pdf.

124

[89]
S. S. Filho, P. Drews-Jr and S. Botelho, “Detecting Changes in 3D Maps using

Gaussian distribution,” Intelligent Robotics and Automation Group (NAUTEC),

2016.

[90]
Y. Zhu and S. Newsman, “Motion-Aware Feature for Improved Video Anomaly

Detection,” University of California, Merced, USA, 2019.

[91]
R. Revathi and M. Hemalatha, “An Emerging Trend Of Feature Extraction Method

In Video Processing,” CS & IT-CSCP 2012, TamilNadu, India, 2012.

[92]
E. Variani, E. McDermott and G. Heigold, “A Gaussian Mixture Model Layer

Jointly Optimized With Discriminative Features Within A Deep Neural Network

Architecture.,” Google Inc., California, 2014.

[93]
H. M. Kun Liu, “Exploring Background-bias for Anomaly Detection in

Surveillance Videos,” Proceedings of the 27th ACM International Conference on

Multimedia, pp. 1490-1499, 2019.

[94]
R. V. H. M. Colque, C. Caetano and M. T. L. d. Andrade, “Histograms of Optical

Flow Orientation and Magnitude and Entropy to Detect Anomalous Events in

Videos,” IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO

TECHNOLOGY, vol. 27, no. 3, pp. 673-682, 2017.

[95]
C. Lu, J. Shi and J. Jia, “Avenue Dataset for Abnormal Event Detection,” The

Chinese Univeristy of Hong Kong, 2013. [Online]. Available:

125

http://www.cse.cuhk.edu.hk/leojia/projects/detectabnormal/dataset.html.

[Accessed 10 May 2021].

[96]
W. Badr, “Auto-Encoder: What Is It? And What Is It Used For? (Part 1),” towards

data science, 22 April 2019. [Online]. Available:

https://towardsdatascience.com/auto-encoder-what-is-it-and-what-is-it-used-for-

part-1-3e5c6f017726. [Accessed 10 May 2021].

[97]
V. Jain, “Everything you need to know about “Activation Functions” in Deep

learning models,” Towards Data Science, 30 December 2019. [Online]. Available:

https://towardsdatascience.com/everything-you-need-to-know-about-activation-

functions-in-deep-learning-models-84ba9f82c253. [Accessed 28 Sept 2021].

[98]
Y. Ding, “Some Strategies for Machine Learning Projects,” Towards Data Science,

20 April 2020. [Online]. Available: https://towardsdatascience.com/some-

strategies-for-machine-learning-projects-5f2f32c34635. [Accessed 28 Sept 2020].

[99]
R. Schmelzer, “The Five Ways To Build Machine Learning Models,” Forbes, 30

May 2021. [Online]. Available:

https://www.forbes.com/sites/cognitiveworld/2021/05/30/the-five-ways-to-build-

machine-learning-models/?sh=1b7014f311a8. [Accessed 28 Sept 2021].

126

APPENDICES

127

APPENDIX I:

 DATASET COMPILATION CODE

The above code section portrays the collection of the datasets from the public libraries of

validated datasets. Data were downloaded and stored in the cloud for easy access.

128

APPENDIX II:

VIDEO FRAMES EXTRACTION CODE

from concurrent.futures import ProcessPoolExecutor, as_comp

leted

import cv2

import multiprocessing

import os

import sys

import os

from os import listdir

import skimage.transform

from skimage import color

from os.path import isfile, join

import numpy as np

import numpy

from datetime import datetime

from pathlib import Path

from os.path import basename

import glob

from random import sample

videopath='/content/drive/My Drive/datasets/ucf_crime/Anoma

ly-Videos/RoadAccidents'

framespath='/content/drive/My Drive/datasets/ucf_crime/test

ing_anomaly_videos/'

def print_progress(iteration, total, prefix='', suffix='',

decimals=3, bar_length=100):

 """

 Call in a loop to create standard out progress bar

 """

 format_str = "{0:." + str(decimals) + "f}" # format th

e % done number string

 if total==0:

 total=1

 percents = format_str.format(100 * (iteration / float(t

otal))) # calculate the % done

 filled_length = int(round(bar_length * iteration / floa

t(total))) # calculate the filled bar length

 bar = '#' * filled_length + '-

' * (bar_length - filled_length) # generate the bar string

129

 sys.stdout.write('\r%s |%s| %s%s %s' % (prefix, bar, pe

rcents, '%', suffix)), # write out the bar

 sys.stdout.flush() # flush to stdout

def extract_frames(video_path, frames_dir, overwrite=False,

 start=-1, end=-1, every=1):

 """

 Extract frames from a video using OpenCVs VideoCapture

 :param video_path: path of the video

 :param frames_dir: the directory to save the frames

 :param overwrite: to overwrite frames that already exis

t?

 :param start: start frame

 :param end: end frame

 :param every: frame spacing

 :return: count of images saved

 """

 video_path = os.path.normpath(video_path) # make the p

aths OS (Windows) compatible

 frames_dir = os.path.normpath(frames_dir) # make the p

aths OS (Windows) compatible

 video_dir, video_filename = os.path.split(video_path)

get the video path and filename from the path

 assert os.path.exists(video_path) # assert the video f

ile exists

 capture = cv2.VideoCapture(video_path) # open the vide

o using OpenCV

 if start < 0: # if start isn't specified lets assume 0

 start = 0

 if end < 0: # if end isn't specified assume the end of

 the video

 end = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))

 capture.set(1, start) # set the starting frame of the

capture

 frame = start # keep track of which frame we are up to

, starting from start

 while_safety = 0 # a safety counter to ensure we don't

 enter an infinite while loop (hopefully we won't need it)

130

 saved_count = 0 # a count of how many frames we have s

aved

 while frame < end: # lets loop through the frames unti

l the end

 _, image = capture.read() # read an image from the

 capture

 if while_safety > 500: # break the while if our sa

fety maxs out at 500

 break

 # sometimes OpenCV reads None's during a video, in

which case we want to just skip

 if image is None: # if we get a bad return flag or

 the image we read is None, lets not save

 while_safety += 1 # add 1 to our while safety,

 since we skip before incrementing our frame variable

 continue # skip

 if frame % every == 0: # if this is a frame we wan

t to write out based on the 'every' argument

 while_safety = 0 # reset the safety count

 save_path = os.path.join(frames_dir, video_file

name, "{:010d}.jpg".format(frame)) # create the save path

 if not os.path.exists(save_path) or overwrite:

 # if it doesn't exist or we want to overwrite anyways

 image=cv2.resize(image,(256,256))

 image=cv2.cvtColor(image, cv2.COLOR_BGR2GRA

Y)

 cv2.imwrite(save_path, image) # save the e

xtracted image

 saved_count += 1 # increment our counter b

y one

 frame += 1 # increment our frame count

 capture.release() # after the while has finished close

 the capture

 return saved_count # and return the count of the image

s we saved

131

def video_to_frames(video_path, frames_dir, overwrite=False

, every=1, chunk_size=1000):

 """

 Extracts the frames from a video using multiprocessing

 """

 video_path = os.path.normpath(video_path) # make the p

aths OS (Windows) compatible

 frames_dir = os.path.normpath(frames_dir) # make the p

aths OS (Windows) compatible

 video_dir, video_filename = os.path.split(video_path)

get the video path and filename from the path

 # make directory to save frames, its a sub dir in the f

rames_dir with the video name

 os.makedirs(os.path.join(frames_dir, video_filename), e

xist_ok=True)

 print(video_filename)

 capture = cv2.VideoCapture(video_path) # load the vide

o

 total = int(capture.get(cv2.CAP_PROP_FRAME_COUNT)) # g

et its total frame count

 capture.release() # release the capture straight away

 if total < 1: # if video has no frames, might be and o

pencv error

 print("Video has no frames. Check your OpenCV + ffm

peg installation")

 return None # return None

 frame_chunks = [[i, i+chunk_size] for i in range(0, tot

al, chunk_size)] # split the frames into chunk lists

 frame_chunks[-1][-1] = min(frame_chunks[-1][-1], total-

1) # make sure last chunk has correct end frame, also hand

les case chunk_size < total

 prefix_str = "Extracting frames from {}".format(video_f

ilename) # a prefix string to be printed in progress bar

 # execute across multiple cpu cores to speed up process

ing, get the count automatically

132

 with ProcessPoolExecutor(max_workers=multiprocessing.cp

u_count()) as executor:

 futures = [executor.submit(extract_frames, video_pa

th, frames_dir, overwrite, f[0], f[1], every)

 for f in frame_chunks] # submit the pro

cesses: extract_frames(...)

 for i, f in enumerate(as_completed(futures)): # as

 each process completes

 print_progress(i, len(frame_chunks)-

1, prefix=prefix_str, suffix='Complete') # print it's prog

ress

 return os.path.join(frames_dir, video_filename) # when

 done return the directory containing the frames

def listdir_nohidden(AllVideos_Path): # To ignore hidden f

iles

 file_dir_extension = os.path.join(AllVideos_Path, '

*.mp4')

 print(file_dir_extension)

 for f in glob.glob(file_dir_extension):

 if not f.startswith('.'):

 yield os.path.basename(f)

if __name__ == '__main__':

 # test it

 AllVideos_Path = videopath

 All_Videos=sorted(listdir_nohidden(AllVideos_Path))

 print(*All_Videos)

 All_Videos.sort()

 for iv in range(len(All_Videos)):

 VideofilePath = os.path.join(AllVideos_Path, All_Vi

deos[iv])

 video_to_frames(video_path=VideofilePath, frames_di

r=framespath, overwrite=True, every=5, chunk_size=1000)

The above code was used to extract frames from the videos. A video file is loaded from

the dataset, then frames are extracted at 24 frames per second, and they are saved in a

directory in the name of the video. It was applied in the data preparation process.

133

APPENDIX III:

DATA AUGMENTATION CODE

During the model development process, the sliding window technique was applied to link

the frames and make sure more image sequences were generated bypassing the window

in a sequence on the extracted frames.

Def get_clips_by_stride(stride, frames_list, sequence_size):

 """ For data augmenting purposes.

 Parameters

 stride : int

 The desired distance between two consecutive frames

 frames_list : list

 A list of sorted frames of shape 256 X 256

 sequence_size: int

 The size of the desired LSTM sequence

 Returns

 list

 A list of clips , 10 frames each

 """

 clips = []

 sz = len(frames_list)

 clip = np.zeros(shape=(sequence_size, 256, 256, 1))

 cnt = 0

 for start in range(0, stride):

 for i in range(start, sz, stride):

 clip[cnt, :, :, 0] = frames_list[i]

 cnt = cnt + 1

 if cnt == sequence_size:

 clips.append(np.copy(clip))

 cnt = 0

 return clips

134

APPENDIX IV:

 SELECTED STAE MODEL

Figure above is the actual model that was selected for improvement. This the model before

it was enhanced. It is important to note its structure before additional of more layers and

addition of regularization functions.

135

APPENDIX V:

ENHANCED STAE MODEL

Figure above illustrates the enhanced model structure after an increase of the model depth

and introduction of pooling functions in the spatial parts of the encoder and decoder. More

layers can be noted from a comparison of the old model.

136

APPENDIX VI:

ILLUSTRATION OF THE ENHANCED STAE MODEL

The figure above is a graphical illustration of the enhanced model structure. It shows the

size of different layers and transitioning between layers using pooling and un-pooling

function. There were notable changes in the spatial and temporal parts of the autoencoder

after improvement since their depth was increased.

137

APPENDIX VII:

PUBLICATION

The following publication was published from this work.

Munyua, J.G., Wambugu, G.M., & Njenga, S.T. (2021). A Survey of Deep Learning

Solutions for Anomaly Detection in Surveillance Videos. International Journal of

Computer and Information Technology (2279-0764).

https://www.ijcit.com/index.php/ijcit/article/view/166

